
- •Содержание
- •1. Структура и свойства высоколегированных специальных сталей
- •1.1. Классификация и характеристика высоколегированных специальных сталей и сплавов.
- •1.2. Влияние некоторых элементов на коррозионную стойкость сталей и сварных соединений
- •1.3. Свариваемость и влияние на нее легирующих элементов.
- •IV. Ванадий (V).
- •2. Металлургические особенности электродуговой сварки высоколегированных сталей.
- •2.1. Легирование металла шва при сварке высоколегированных сталей. Особенности.
- •2.2. Общие вопросы металлургии электродуговой сварки высоколегированных сталей
- •2.3. Некоторые металлургические особенности газоэлектрической сварки высоколегированных сталей (сварка в среде защитных газов).
- •2.4 Металлургические особенности электродуговой сварки под флюсом высоколегированных сталей
- •2.5. Металлургические особенности электродуговой сварки высоколегированных сталей покрытыми электродами
- •3. Горячие трещины сварных швов высоколегированных сталей и меры их предотвращения.
- •3.1. Факторы, определяющие склонность металла высоколегированных сварных швов к образованию горячих трещин.
- •3.2. Влияние химического состава и структуры высоколегированных швов на их стойкость против образования горячих трещин
- •3.3. Технологические меры повышения стойкости аустенитных швов против образования горячих трещин
- •4. Холодные трещины в сварных швах высоколегированных сталей, причины их возникновения и меры предотвращения
- •5. Особенности сварки специальных высоколегированных сталей.
- •5.1. Сварка закаливающихся высоколегированных сталей.
- •5.1.1. Влияние термического цикла сварки на структуру и свойства закаливающихся сталей
- •5.1.2. Сварка высоколегированных сталей с 13 % хрома
- •5.2. Сварка высокохромистых ферритных сталей влияние термического цикла сварки на структуру и свойства ферритных сталей.
- •5.3. Сварка аустенитных высоколегированных сталей.
- •5.3.1. Влияние термического цикла сварки на свойства аустенитных сталей
- •5.3.2. Сварка хромоникелевых аустенитных сталей (на примере сварки сталей 12х18н9т и 08х18н10т).
- •5.4. Особенности сварки разнородных специальных легированных сталей
- •5.4.1.Сварные соединения сталей, разнородных по составу и структурному классу
- •5.4.2. Особенности сварки разнородных сталей аустенитными швами.
- •2. Сварка никелевых хладостойких сталей (типа 06н6, 06н9); сварка средне-углеродистых низколегированных высокопрочных сталей (30хгса, 30хгсна и др.); сварка высокохромистых сталей.
- •6. Термическая обработка сварных соединении специальных сталей
- •6.1. Термическая обработка сварных соединений аустенитных сталей
- •I— закалка;II—стабилизирующий отжиг
- •6.2. Термическая обработка сварных соединений низколегированных теплоустойчивых сталей
- •6.3. Термическая обработка сварных соединений высоколегированных хромистых сталей.
- •I—мкк;II—-фаза;III— 475-град хрупкости
- •7.2 Ультразвуковая сварка пластмасс
- •9. Особенности сварки алюминия и его сплавов.
- •10. Особенности сварки титана и его сплавов
- •11. Применение сварки в медицине
3.3. Технологические меры повышения стойкости аустенитных швов против образования горячих трещин
К известным в настоящее время технологическим мерам повышения трещиноустойчивости наплавляемого металла относятся:
- выбор соответствующих метода и режима сварки, а также температуры свариваемого металла, обеспечивающих получение наиболее благоприятной формы шва, его микроструктуры, темпа и времени нарастания напряжений относительно температурного интервала хрупкости;
- механическое воздействие на кристаллизующийся металл ванны или электромагнитное воздействие на дугу и сварочную ванну для обеспечения лучшей формы шва, меньшей температуры сварочной ванны и более благоприятных условий кристаллизации металла;
- сварка дополнительно подогреваемой проволокой с управляемым переносом электродного металла при помощи импульсного тока; сварка на повышенных скоростях или, наоборот, на скоростях менее 10 м/ч.
Влияние режима сварки и температуры свариваемого металла на стойкость однофазных аустенитных швов против образования горячих трещин.
а). В литературе по технологии дуговой сварки нержавеющих аустенитных сталей имеются указания о значительном влиянии режима сварки на стойкость чисто устенитных швов против образования горячих трещин.
б). Выше отмечалось отрицательное влияние увеличения погонной энергии сварки на трещиноустойчивость таких швов.
в). В отличие от нелегированных швов нет прямой связи между трещиноустойчивостью аустенитного шва и его коэффициентом формы:
- с повышением сварочного тока при неизменных прочих параметрах режима коэффициент формы шва уменьшается, а при повышении напряжения дуги, наоборот, увеличивается;
- при увеличении скорости сварки коэффициент формы шва лишь незначительно уменьшается, критическая же скорость деформирования при этом возрастает весьма сильно;
- предварительный подогрев свариваемой стали увеличивает коэффициент формы шва и снижает стойкость металла чисто аустенитного шва против образования горячих трещин, усиливая вредное действие кремния на трещиноустойчивость.
г). Подобно зависимости сопротивляемости аустенитного шва образованию горячих трещин от погонной энергии сварки существует также и четкая зависимость между шириной шва и длиной сварочной ванны, с одной стороны, и стойкостью металла шва против образования горячих трещин—с другой:
- с повышением сварочного тока, напряжения дуги и температуры свариваемого металла ширина шва и длина сварочной ванны увеличивается, а критическая скорость деформации наплавленного аустенитного металла соответственно падает;
- с увеличением же скорости сварки в пределах от 21,5 до 30,7 м/ч, наоборот, длина сварочной ванны и особенно ширина шва уменьшается, а критическая скорость деформации наплавленного аустенитного металла соответственно возрастает.
д). При сварке аустенитных сталей ширину шва обычно стремятся ограничить', при ручной сварке аустенитной стали не применяют поперечные колебания электрода.
ж) Увеличение скорости сварки в указанных пределах (см. пункт д). при сохранении погонной энергии, т. е. при соответствующем повышении сварочного тока и напряжения дуги наблюдается противоположное явление — удлинение сварочной ванны иухудшение трещиноустойчивости металла шва.
Снижение же скорости сварки менее 10 м/ч как при некотором уменьшении сварочного тока, так и при неизменной его величине не только не ухудшает трещиноустойчивость чисто аустенитного шва, а, наоборот, значительно повышает ее, несмотря на увеличение погонной энергии. Так, например, если при аргонодуговой сварке неплавящимся электродом стали О8Х20Н20С5 толщиной 8мм со скоростью до 20м/ч в шве были горячие трещины, то при сварке со скоростью6 м/ч при прочих равных условиях трещины в шве отсутствовали. То же самое имеет место при электродуговой и электрошлаковой сварке толстого металла.
з). Наблюдается снижение трещиноустойчивости аустенитных швов при повышении температуры свариваемой стали. Это обусловлено несколькимипричинами:
- одной из них является снижение градиента температур сварочной ванны у фронта кристаллизации, что, как известно, приводит к усилению химической дендритной неоднородности по вредным примесям;
- при указанном повышении температуры свариваемой стали происходит укрупнение дендритов металла шва, увеличение ширины и длины сварочной ванны, вследствие ,чего возрастает усадка затвердевающего металла, снижается запас высокотемпературной междендритной и межкристаллитной его пластичности и расширяется температурный интервал хрупкости.
и) Наблюдается снижение стойкости швов против образования горячих трещин при повышении сварочного тока или напряжения дуги. Это обусловлено двумяфакторами:
- увеличением погонной энергии сварки (возрастанием тепловложения) и связанных с этим увеличением величины и темпа нарастания сварочных напряжений;
- увеличением ширины и длины сварочной ванны, обусловливающих возрастание усадочных напряжений, а также неблагоприятную направленность кристаллитов (под большим углом к оси шва).
к). Установлено благоприятное влияние снижения скорости сварки менее 10 м/ч на трещиноустойчивость аустенитных швов. Это связано, наоборот, с уменьшением угла между направлением кристаллитов и осью шва, а также с возрастанием градиента температур в сварочной ванне перед фронтом кристаллизации. Благодаря первому уменьшается зональная ликвация металла шва по вредным примесям (уменьшается концентрация примесей в зоне срастания кристаллитов по оси шва), благодаря второму уменьшается степень дендритной химической неоднородности металла по этим примесям. Снижение, например, скорости аргонодуговой сварки стали 08Х17Н16М3Т с 18,3 до 6,0м/ч привело к повышению градиента температур с 83град/см до 128град/см Химическая дендритная неоднородность металла шва по кремнию уменьшилась при этом примерно в 1,4 раза.