Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
EKZAMEN.docx
Скачиваний:
6
Добавлен:
29.05.2015
Размер:
603.49 Кб
Скачать

Вопрос 23.

Вопрос 24.

В принципе, конечный результат переотравления реактора ксеноном по прошествии достаточно длительного времени после перехода реактора с одного стационарного уровня мощности (Np1) на другой стационарный уровень мощности (Np2) мы с нашими знаниями отравления уже способны предсказать. Действительно: если реактор достаточно длительное время (более трёх суток) работал на постоянном уровне мощности Np1, то это означает, что к исходу третьих суток работы реактор был стационарно отравлен на этом уровне мощности. И если в этот момент реактор переводится на новый уровень мощности Np2 и работает на этом новом уровне мощности более трёх суток, то к исходу третьих суток работы реактор явно окажется стационарно отравленным на этом новом уровне мощности. Следовательно, для полной ясности о переходном процессе переотравления реактора ксеноном от одного стационарного уровня до другого, нам нужно ответить на вопрос: как и за счёт чего это происходит? Иначе говоря, нас интересует общая закономерность переходного процесса rXe(t) именно в эти трое суток после перехода на новый уровень мощности.

А эта закономерность качественно зависит от того, на меньший или на более высокий уровень мощности переходит реактор.

19.4.1. Характер переотравления реактора после перехода на более низкий уровень мощности. С переходом на более низкий уровень мощности (Ф1 ® Ф2, Ф1 > Ф2) дифференциальное уравнение скорости изменения концентрации ксенона имеет вид:

(19.4.1)

где первые два слагаемых представляют собой скорость прибыли ксенона, а вторые два (отрицательные) - скорость убыли ксенона. И если концентрация йода в момент перехода на более низкий уровень мощности остаётся прежней (стационарной на исходном уровне мощности Np1), то скорость образования ксенона как непосредственного продукта деления (первое положительное слагаемое) - уменьшается во столько раз, во сколько новое значение плотности потока нейтронов Ф2 меньше старого значения Ф1; скорость выгорания ксенона saXeNXe(t)Ф2 тоже уменьшается (и во столько же раз), но разница этих скоростей [gXeSf5 - saXeNXe(t)] Ф2 оказывается величиной положительной, поскольку в условиях стационарного отравления gXeSf5 > saXeNXeст всегда, что несложно проверить подстановкой конкретных цифр в это неравенство. Физически это означает, что, несмотря на уменьшение скорости расстрела ксенона нейтронами, скорость его образования в первый период времени после перехода на пониженный уровень мощности остаётся более высокой, чем скорость его убыли, то есть концентрация ксенона в этот начальный период времени будет расти.

Далее, по мере уменьшения скорости образования йода начинает всё более заметно уменьшаться скорость образования из него ксенона, из-за чего уменьшается суммарная скорость образования ксенона и в итоге наступает такой момент t*, когда скорости образования и убыли ксенона сравниваются, и величина производной dNXe/dt становится равной нулю. Это означает, что величина Nxe(t) достигает максимума, после чего dNXe/dt становится величиной отрицательной, а функция Nxe(t) - убывающей функцией.

Заметили ли Вы, что здесь были почти повторены те же рассуждения, что и в случае останова реактора?

Итак, закономерностью изменения концентрации ксенона после снижения уровня мощности реактора является первоначальное нарастание концентрации его до некоторого максимального значения и последующее снижение концентрации ксенона до стационарного значения на новом (пониженном) уровне мощности. То есть, если перейти от концентраций ксенона к потерям реактивности за счёт отравления реактора ксеноном, то график переотравления реактора будет иметь вид, показанный на рис.19.8.

Рис.19.8. Характер переотравления реактора ксеноном после снижения уровня мощности.

Таким образом, переходный процесс rXe(t) после снижения мощности реактора имеет характер перехода от более высокого на старом уровне мощности стационарного отравления к менее высокому стационарному отравлению на новом уровне мощности, и этот переход осуществляется не монотонно, а через йодную яму, тем более глубокую, чем выше исходный уровень мощности Np1 и чем ниже уровень мощности Np2.

Самая глубокая из йодных ям, которую только возможно получить, (догадались?) является йодная яма после снижения мощности реактора от номинальной (Np1 = Npном) до нуля (Np2 = 0), то есть после останова реактора с номинальной мощности. Таким образом, йодная яма после останова реактора может рассматриваться как частный случай после снижения мощности реактора до полной его остановки.

      1. Переотравление реактора после повышения уровня мощности. Подставляя в уже упоминавшееся уравнение скорости изменения концентрации ксенона величины физических констант и значения Ф1 и Ф2 > Ф1, нетрудно на любых конкретных цифрах убедиться, что в первые моменты после перехода реактора на более высокий уровень мощности величина скорости убыли ксенона (последние два слагаемых) при любых соотношениях плотностей потока нейтронов Ф21 > 1 будет больше скорости прибыли ксенона (первые два положительных слагаемых).

А это значит, что сразу после увеличения мощности величина производной dNXe/dt - величина отрицательная, и концентрация ксенона в первый период после увеличения мощности реактора падает. Физически это объясняется тем, что сразу после увеличения мощности в первую очередь возрастает скорость расстрела ксенона нейтронами, в то время как скорость его образования в начальный период после увеличения мощности остаётся практически прежней: хотя скорость генерации ксенона как непосредственного продукта деления и возрастает, но она всё же почти на два порядка ниже скорости образования ксенона из распадающегося йода, а последняя - в первый небольшой период времени после увеличения мощности остаётся практически той же, что и была до увеличения мощности (то есть стационарной).

Но по мере увеличения концентрации йода за счёт непосредственного выхода из реакции деления (её величина устремляется к новому, более высокому стационарному значению, пропорциональному более высокому уровню мощности Np2) растёт скорость его b-распада, а это значит, что растёт скорость образования из него ксенона, и уменьшение общей скорости образования ксенона с течением времени начинает «тормозиться».

Это будет продолжаться до того момента t*, когда скорости образования и убыли ксенона сравняются, то есть величина производной dNXe/dt станет равной нулю, и падение концентрации ксенона прекратится (функция Nxe(t) достигает минимума), а после этого момента t* концентрация йода возрастёт уже настолько, что скорость его распада (равная скорости образования из него ксенона) в сумме со скоростью непосредственного образования ксенона как осколка деления начнёт превышать суммарную скорость убыли ксенона по обоим каналам убыли.

Это значит, что величина производной dNXe/dt становится величиной положительной, а сама функция Nxe(t) - возрастающей. Рост концентрации Nxe(t) после момента t* будет продолжаться до тех пор, пока она не достигнет стационарного значения на новом, более высоком уровне мощности Np2, то есть приблизительно через трое суток.

Качественный характер переходного процесса rXe(t) в течение этих трёх суток после перевода реактора на более высокий уровень мощности показан на рис.19.9. Как и в случае после снижения мощности, переходный процесс Хе(t) имеет две монотонные стадии: вначале небольшое разотравление, а затем монотонный переход к более высокому стационарному отравлению на более высоком уровне мощности.

Рис.19.9. Качественный характер переходного процесса переотравления реактора ксеноном

в первые трое суток после перевода реактора на более высокий стационарный уровень мощности.

По аналогии с прижившимся жаргонным термином «йодная яма» переходный процесс нестационарного переотравления реактора ксеноном после его перевода на более высокий уровень мощности в среде операторов принято именовать «йодным холмом», хотя, как вы понимаете, это совершенно неправильно: некоторое уменьшение потерь реактивности за счёт отравления ксеноном в первый период переходного процесса имеет место не вследствие каких-то изменений концентрации йода, а исключительно благодаря тому, что в этот период скорость убыли ксенона вследствие превалирующей скорости его расстрела нейтронами держится выше, чем скорость его образования. Итак:

Переотравление реактора ксеноном после его перевода на более высокий уровень мощности имеет характер перехода от более низкого стационарного отравления (на исходном уровне мощности) к более высокому стационарному отравлению (на более высоком уровне мощности), и этот переход осуществляется не монотонным увеличением потерь реактивности, а через «холм», обусловленный временным снижением концентрации ксенона вследствие его интенсивного расстрела нейтронами в первый период переходного процесса.

Высота холма будет тем больше, чем больше соотношение Ф21. Время наступления его максимума t* также определяется соотношением конечной и начальной мощностей реактора, но по сравнению со временем наступления максимума йодных ям после снижения уровня мощности это время имеет меньшие величины (от 1 до 5 часов).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]