
- •Введение
- •1 Коллекторские свойства горных пород
- •1.1 Типы пород–коллекторов
- •1.2 Залегание нефти, газа и воды
- •1.3 Гранулометрический состав горных пород
- •1.4 Пористость
- •1.4.1 Виды пористости
- •1.4.2 Структура порового пространства
- •1.5 Проницаемость
- •1.5.1 Линейная фильтрация нефти и газа в пористой среде
- •1.5.2 Радиальная фильтрация нефти и газа в пористой среде
- •1.5.3 Классификация проницаемых пород
- •1.5.4 Оценка проницаемости пласта, состоящего из нескольких продуктивных пропластков различной проницаемости
- •1.5.5 Зависимость проницаемости от пористости
- •1.5.6 Виды проницаемости
- •1.6 Насыщенность коллекторов
- •1.7 Зависимость проницаемости от насыщенности коллекторов
- •1.8 Удельная поверхность
- •1.9 Коллекторские свойства трещиноватых пород
- •1.10 Карбонатность горных пород
- •1.11 Набухаемость пластовых глин
- •1.12 Механические свойства горных пород
- •1.13 Тепловые свойства горных пород
- •2 Состав и физико-химические свойства природных газов и нефти
- •2.1 Состав и физико-химические свойства природных газов
- •2.1.1 Состав природных газов
- •2.1.2 Способы выражения состава
- •2.1.3 Аддитивный подход расчета физико-химических свойств
- •2.1.4 Уравнение состояния
- •2.1.5 Уравнение состояния реальных газов
- •2.1.6 Вязкость газов
- •2.1.7 Растворимость газов в нефти и воде
- •2.1.8 Упругость насыщенных паров
- •2.2 Состав и физико-химические свойства нефти
- •2.2.1 Состав нефти
- •2.2.2 Физико–химические свойства нефти
- •2.2.2.1 Плотность нефти
- •2.2.2.2 Вязкость нефти
- •2.2.2.3 Реологические свойства нефти
- •2.2.2.4 Газосодержание нефти
- •2.2.2.5 Давление насыщения нефти газом
- •2.2.2.6 Сжимаемость нефти
- •2.2.2.7 Объёмный коэффициент нефти
- •2.2.2.8 Тепловые свойства нефти
- •2.2.2.9 Электрические свойства нефти
- •2.3 Различие свойств нефти в пределах нефтеносной залежи
- •3 Фазовые состояния углеводородных систем
- •3.1 Схема фазовых превращений однокомпонентных систем
- •3.2 Схема фазовых превращений двух – и многокомпонентных
- •3.4 Краткая характеристика газогидратных залежей
- •3.6 Фазовые переходы в воде, нефти и газе
- •4 Состав и физико-химические свойства пластовых вод
- •4.1 Химические свойства пластовых вод
- •4.1.1 Минерализация пластовой воды
- •4.1.2 Тип пластовой воды
- •4.1.3 Жесткость пластовых вод
- •4.1.4 Показатель концентрации водородных ионов
- •4.2 Физические свойства пластовых вод
- •4.2.1 Плотность
- •4.2.2 Вязкость
- •4.2.3 Сжимаемость
- •4.2.4 Объёмный коэффициент
- •4.2.5 Тепловые свойства
- •4.2.6 Электропроводность
- •4.3 Характеристика переходных зон
- •5.1 Роль поверхностных явлений при фильтрации в пористой среде
- •5.2 Поверхностное натяжение
- •5.3 Смачивание и краевой угол
- •5.4 Работа адгезии и когезии, теплота смачивания
- •5.5 Кинетический гистерезис смачивания
- •5.6 Свойства поверхностных слоев пластовых жидкостей
- •6 Физические основы вытеснения нефти водой и газом из пористых сред
- •6.1 Источники пластовой энергии
- •6.2 Силы, действующие в залежи
- •6.3 Поверхностные явления при фильтрации пластовых жидкостей и причины нарушения закона Дарси
- •6.4 Общая схема вытеснения из пласта нефти водой и газом
- •6.5 Нефтеотдача пластов при различных условиях дренирования залежи
- •6.6 Роль капиллярных процессов при вытеснении нефти водой из пористых сред
- •6.7 Зависимость нефтеотдачи от скорости вытеснения нефти водой
- •7. 1 Методы увеличения извлекаемых запасов нефти
- •7.2 Моющие и нефтевытесняющие свойства вод
- •7.3 Обработка воды поверхностно-активными веществами
- •7.4 Применение углекислого газа для увеличения нефтеотдачи
- •7.5 Вытеснение нефти из пласта растворами полимеров
- •7.6 Щелочное и термощелочное заводнение
- •7.7 Мицеллярные растворы
- •7.8 Термические методы повышения нефтеотдачи пластов
- •7.9 Извлечение нефти газом высокого давления
- •Список литературы
- •Содержание
- •Физика пласта
1.5.6 Виды проницаемости
При разработке нефтяных и газовых месторождений встречаются различные виды фильтрационных потоков: движение нефти или газа или совместное движение двух-, трехфазного потока одновременно. Поэтому для характеристики проницаемости пород нефтесодержащих пластов введены понятия абсолютной, фазовой и относительной проницаемостей.
Проницаемость абсолютная (физическая) характеризует проницаемость пористой среды для газа или однородной жидкости при выполнении следующих условий:
– отсутствие физико-химического взаимодействия между пористой
средой и этим газом или жидкостью, фаза химически инертна по отношению к породе;
–полное заполнение всех пор среды этим газом или жидкостью.
Абсолютная проницаемость характеризует фильтрационную способность горной породы для инертного в физико-химическом отношении флюида.
Для продуктивных нефтяных пластов эти условия не выполняются.
Проницаемость фазовая (эффективная) – это проницаемость пористой среды для данного газа или жидкости при одновременном наличии в порах другой фазы (жидкости или газа) или других фаз (газ–нефть, нефть–вода, вода–газ, газ–нефть–вода) независимо от того, находятся они в статическом состоянии (например, капиллярно- связанная вода) или принимают участие в совместной фильтрации. Величина её зависит не только от физических свойств пород, но и от степени насыщенности порового пространства жидкостями или газом и от их физико-химических свойств. При фильтрации смесей коэффициент фазовой проницаемости намного меньше коэффициента абсолютной проницаемости и неодинаков для пласта в целом.
Относительная проницаемость определяется отношением величины фазовой проницаемости к величине абсолютной для той же породы.
Относительные проницаемости (k', % или в долях) породы для нефти и воды (газа аналогично) оцениваются как:
k'Н = (kН / k) ·100 %; k'В = (kВ / k) · 100 %, (1.39)
где kН и kВ – фазовые проницаемости для воды и нефти;
k – абсолютная проницаемость породы.
Фазовая (эффективная), относительная проницаемости, насыщенность горных пород определяются экспериментально. Проницаемость горной породы зависит от степени насыщения породы флюидами, соотношения фаз, физико-химических свойств породы и флюидов.
1.6 Насыщенность коллекторов
Фазовая и относительная проницаемости для различных фаз зависят от нефте-, газо- и водонасыщенности порового пространства породы, градиента давления, физико-химических свойств жидкостей и поровых фаз.
Насыщенность – один из важных параметров продуктивных пластов, тесно связанный с фазовой проницаемостью и характеризует водонасыщенность (Sв), газонасыщенность (Sг), нефтенасыщенность (Sн).
Предполагается, что продуктивные пласты сначала были насыщены водой. Водой были заполнены капилляры, каналы, трещины. При миграции и аккумуляции углеводороды, вследствие меньшей плотности, стремятся к верхней части ловушки, выдавливая вниз воду. Вода легче всего уходит из трещин и каналов. Из капиллярных пор и микротрещин вода плохо уходит в силу капиллярных явлений. Она может удерживаться молекулярно-поверхностными и капиллярными силами. Таким образом, в пласте находится остаточная (погребенная) вода. Количество остаточной воды (Sв.ост) связано с генетическими особенностями формирования залежей нефти и газа. Её величина зависит и от содержания цемента в коллекторах, и, в частности, от содержания в них глинистых минералов: каолинита, монтмориллонита, гидрослюд и др.
Обычно, для сформированных нефтяных месторождений остаточная водонасыщенность изменяется в диапазоне от 6 до 35 %. Соответственно, нефтенасыщенность (SН), равная 65 % и выше (до 90 %), в зависимости от "созревания" пласта, считается хорошим показателем.
Однако эта закономерность наблюдается далеко не для всех регионов. Например, в Западной Сибири встречается много, так называемых, недонасыщенных нефтью пластов. В залежах иногда наблюдаются переходные зоны (ПЗ), в которых содержится рыхлосвязанная вода. Толщины ПЗ могут достигать десятков метров. При создании депрессий на забоях добывающих скважин вода из этих зон попадает в фильтрационные потоки и увеличивает обводнённость продукции, что осложняет выработку запасов нефти. Такие явления характерны для месторождений: Суторминского, Советско-Соснинского, Таллинского, Средневасюганского и др.
В пределах нефтяных залежей, большая начальная нефтенасыщенность отмечается в купольной части структур, к зоне водонефтяного контакта (ВНК) ее величина, как правило, может значительно снижаться. Остаточная водонасыщенность, обусловленная капиллярными силами, не влияет на основную фильтрацию нефти и газа.
Количество углеводородов, содержащихся в продуктивном пласте, зависит от насыщенности порового пространства породы водой, нефтью и газом.
Водонасыщенность (SВ) характеризует отношение объёма открытых пор, заполненных водой к общему объёму пор горной породы. Аналогичны определения для нефте- (SН) и газонасыщенности (SГ):
,
(1.40)
где VВ, VН, VГ – соответственно объёмы воды, нефти и газа в поровом объёме (Vпор) породы.
От объёма остаточной воды зависит величина статической полезной ёмкости коллектора. Статическая полезная ёмкость коллектора (Пст) характеризует объём пор и пустот, которые могут быть заняты нефтью или газом. Эта величина оценивается как разность открытой пористости и объёма остаточной воды:
Пст = Vсоб. пор – Vв. ост. (1.41)
В зависимости от перепада давления, существующего в пористой среде, свойств жидкостей, поверхности пород та или иная часть жидкости (неподвижные пленки у поверхности породы, капиллярно удерживаемая жидкость) не движется в порах. Её величина влияет на динамическую полезную ёмкость коллектора. Динамическая полезная ёмкость коллектора (Пдин) характеризует относительный объём пор и пустот, через которые может происходить фильтрация нефти или газа в условиях, существующих в пласте.
Для месторождений параметр насыщенности нормирован и равен единице (S = 1) или 100 %. То есть для нефтяных месторождений справедливо следующее соотношение:
SН + SВ = 1. (1.42)
Для газонефтяных месторождений соответственно:
SВ + SН + SГ = 1, Sг = 1 – (SB + SH). (1.43)
На практике насыщенность породы определяют в лабораторных условиях по керновому материалу в аппаратах Закса (см. лабораторный практикум) или по данным геофизических исследований в открытых стволах скважин.