Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физ.Пласта.РИО / ВОТ ЭТО МОЕ!.3.97.2011.doc
Скачиваний:
266
Добавлен:
22.05.2015
Размер:
17.34 Mб
Скачать

4 Состав и физико-химические свойства пластовых вод

По мере эксплуатации нефтяных месторождений скважины постепенно обводняются. Содержание пластовой воды в скважинной продукции растёт и может достигать 95-98 %. Поэтому важно знать, какое влияние оказывает пластовая вода на процесс добычи нефти и газа.

Состав пластовых вод разнообразен и зависит от природы эксплуатируемого нефтяного пласта, физико-химических свойств нефти и газа.

Различают следующие виды пластовых вод:

  • подошвенные (вода, заполняющая поры коллектора под залежью);

  • краевые (вода, заполняющая поры вокруг залежи);

  • промежуточные (между пропластками);

  • остаточные (вода оставшаяся со времён образования залежи).

Все эти виды вод представляют собой единую гидродинамическую систему. Как отмечалось выше, в продуктивных горизонтах нефтяных и газовых залежей остаточная водонасыщенность составляет в среднем 6-35 % от объёма пор в коллекторах. С приближением к зоне водонефтяного контакта (ВНК) количество воды постепенно увеличивается за счет капиллярного подъема. Процентное содержание остаточной воды может быть и выше. При этом вода не вся находится в поровом пространстве, а образует так называемые переходные зоны (ПЗ), что наблюдается на некоторых месторождениях Западной Сибири: Советско-Соснинское (на границе Томской и Тюменской области), Суторминское (Ноябрьск), Приобское (Сургут) и др. Такие явления характерны для низкопроницаемых недонасыщенных пластов. Толщины ПЗ могут быть сопоставимы с толщинами продуктивных пластов, что создает серьезные проблемы в разработке месторождений.

4.1 Химические свойства пластовых вод

Пластовые воды характеризуются набором свойств, влияющих на процессы вытеснения нефти, так как она (вода) часто является вытесняющим агентом нефти из пласта, а следовательно, её свойства влияют на количество вытесненной нефти, на процессы подъема нефти на поверхность, на процессы сбора и подготовки скважинной продукции.

4.1.1 Минерализация пластовой воды

Минерализация воды характеризует содержание в ней растворённых солей в г/л, мг/л, г/м3, кг/м3. В пластовых водах всегда растворено некоторое количество (Q) солей. По степени минерализации пластовые воды делятся на четыре группы:

    • рассолы (Q > 50 г/л);

    • солёные (10 < Q < 50 г/л);

    • солоноватые (1< Q < 10 г/л);

    • пресные (Q  1 г/л).

Минерализация пластовой воды растёт с глубиной залегания пластов. Минерализация вод нефтяных месторождений колеблется от нескольких сотен г/м3 в пресной воде до 300 кг/м3 в концентрированных рассолах.

В пластовой воде содержатся ионы растворённых солей:

  • анионы: OH; Cl; SO42–; CO32–; HCO3­–;

  • катионы: H+; K+; Na+; NH4+; Mg2+; Ca2+; Fe3+;

  • ионы микроэлементов: I; Br;

  • коллоидные частицы SiO2; Fe2O3; Al2O3;

  • нафтеновые кислоты и их соли.

Больше всего в воде содержится хлористых солей, до 80-90 % от общего содержания солей. В количественном отношении катионы солей пластовых вод располагаются в следующий ряд: Na+; Ca2+; Mg2+; K+; Fe3+.

Большое значение на растворимость солей и увеличение их концентрации в пластовых водах оказывает температура и парциальное давление СО2. Максимальная растворимость СаСО3 в воде наблюдается при 0 оС, с возрастанием температуры она падает. Максимальная растворимость гипса (СаSО4·2Н2О) в воде наблюдается при 40 оС. С дальнейшим возрастанием температуры она уменьшается. С увеличением парциального давления СО2 растворимость СаСО3 возрастает. Уменьшение пластового давления усиливает процесс выпадения солей СаСО3 и др. Изменение термобарической обстановки в пласте даже при небольшой минерализации пластовых вод влияет на растворимость солей и на процесс их выпадения.