
- •Введение
- •1 Коллекторские свойства горных пород
- •1.1 Типы пород–коллекторов
- •1.2 Залегание нефти, газа и воды
- •1.3 Гранулометрический состав горных пород
- •1.4 Пористость
- •1.4.1 Виды пористости
- •1.4.2 Структура порового пространства
- •1.5 Проницаемость
- •1.5.1 Линейная фильтрация нефти и газа в пористой среде
- •1.5.2 Радиальная фильтрация нефти и газа в пористой среде
- •1.5.3 Классификация проницаемых пород
- •1.5.4 Оценка проницаемости пласта, состоящего из нескольких продуктивных пропластков различной проницаемости
- •1.5.5 Зависимость проницаемости от пористости
- •1.5.6 Виды проницаемости
- •1.6 Насыщенность коллекторов
- •1.7 Зависимость проницаемости от насыщенности коллекторов
- •1.8 Удельная поверхность
- •1.9 Коллекторские свойства трещиноватых пород
- •1.10 Карбонатность горных пород
- •1.11 Набухаемость пластовых глин
- •1.12 Механические свойства горных пород
- •1.13 Тепловые свойства горных пород
- •2 Состав и физико-химические свойства природных газов и нефти
- •2.1 Состав и физико-химические свойства природных газов
- •2.1.1 Состав природных газов
- •2.1.2 Способы выражения состава
- •2.1.3 Аддитивный подход расчета физико-химических свойств
- •2.1.4 Уравнение состояния
- •2.1.5 Уравнение состояния реальных газов
- •2.1.6 Вязкость газов
- •2.1.7 Растворимость газов в нефти и воде
- •2.1.8 Упругость насыщенных паров
- •2.2 Состав и физико-химические свойства нефти
- •2.2.1 Состав нефти
- •2.2.2 Физико–химические свойства нефти
- •2.2.2.1 Плотность нефти
- •2.2.2.2 Вязкость нефти
- •2.2.2.3 Реологические свойства нефти
- •2.2.2.4 Газосодержание нефти
- •2.2.2.5 Давление насыщения нефти газом
- •2.2.2.6 Сжимаемость нефти
- •2.2.2.7 Объёмный коэффициент нефти
- •2.2.2.8 Тепловые свойства нефти
- •2.2.2.9 Электрические свойства нефти
- •2.3 Различие свойств нефти в пределах нефтеносной залежи
- •3 Фазовые состояния углеводородных систем
- •3.1 Схема фазовых превращений однокомпонентных систем
- •3.2 Схема фазовых превращений двух – и многокомпонентных
- •3.4 Краткая характеристика газогидратных залежей
- •3.6 Фазовые переходы в воде, нефти и газе
- •4 Состав и физико-химические свойства пластовых вод
- •4.1 Химические свойства пластовых вод
- •4.1.1 Минерализация пластовой воды
- •4.1.2 Тип пластовой воды
- •4.1.3 Жесткость пластовых вод
- •4.1.4 Показатель концентрации водородных ионов
- •4.2 Физические свойства пластовых вод
- •4.2.1 Плотность
- •4.2.2 Вязкость
- •4.2.3 Сжимаемость
- •4.2.4 Объёмный коэффициент
- •4.2.5 Тепловые свойства
- •4.2.6 Электропроводность
- •4.3 Характеристика переходных зон
- •5.1 Роль поверхностных явлений при фильтрации в пористой среде
- •5.2 Поверхностное натяжение
- •5.3 Смачивание и краевой угол
- •5.4 Работа адгезии и когезии, теплота смачивания
- •5.5 Кинетический гистерезис смачивания
- •5.6 Свойства поверхностных слоев пластовых жидкостей
- •6 Физические основы вытеснения нефти водой и газом из пористых сред
- •6.1 Источники пластовой энергии
- •6.2 Силы, действующие в залежи
- •6.3 Поверхностные явления при фильтрации пластовых жидкостей и причины нарушения закона Дарси
- •6.4 Общая схема вытеснения из пласта нефти водой и газом
- •6.5 Нефтеотдача пластов при различных условиях дренирования залежи
- •6.6 Роль капиллярных процессов при вытеснении нефти водой из пористых сред
- •6.7 Зависимость нефтеотдачи от скорости вытеснения нефти водой
- •7. 1 Методы увеличения извлекаемых запасов нефти
- •7.2 Моющие и нефтевытесняющие свойства вод
- •7.3 Обработка воды поверхностно-активными веществами
- •7.4 Применение углекислого газа для увеличения нефтеотдачи
- •7.5 Вытеснение нефти из пласта растворами полимеров
- •7.6 Щелочное и термощелочное заводнение
- •7.7 Мицеллярные растворы
- •7.8 Термические методы повышения нефтеотдачи пластов
- •7.9 Извлечение нефти газом высокого давления
- •Список литературы
- •Содержание
- •Физика пласта
1.8 Удельная поверхность
Под удельной поверхностью (Sуд) горных пород понимают суммарную поверхность всех ее зерен в единице объёма породы или суммарную свободную поверхность частиц в единице объёма (Sуд = F/V, м2/м3).
Удельная поверхность характеризует степень дисперсности породы, более обобщенно, чем гранулометрический состав. Величина её выражается одним численным значением, а не функцией распределения фракций.
Тем не менее соотношение водо-, нефтенасыщенности, степень проявления молекулярно-поверхностных и капиллярных сил при движении пластовых жидкостей в пористой среде и фильтрационная способность зависят, с одной стороны, от физико-химических свойств жидкости, а с другой – от гранулометрического состава, структуры порового пространства, коэффициента пористости пласта и удельной поверхности.
Если пористая среда, через которую происходит фильтрация жидкости, крупнозернистая с относительно небольшой удельной поверхностью, роль молекул жидкости, адсорбированных на поверхности зёрен и защемлённых в углах их контакта невелика. Число молекул жидкости, связанных с породой, соизмеримо мало с числом молекул жидкости, движущихся в порах породы.
Если пористая среда, через которую происходит фильтрация жидкости тонкозернистая и имеет большую удельную поверхность (например, глины), число поверхностных молекул жидкости возрастает и становится соизмеримым с числом молекул жидкости, перемещающихся в объёме порового пространства. В этом случае молекулярно-поверхностные силы начинают играть значительную роль.
С увеличением дисперсности удельная поверхность породы возрастает. Удельная поверхность возрастает с уменьшением диаметра зерен и коэффициента пористости. Наибольшую удельную поверхность имеют глины. Чем больше мелких частиц пород в гранулярных коллекторах, а следовательно, и мелких пор, тем больше их удельная поверхность.
Исходя из условий, что частицы имеют сферическую форму и, принимая их размер (классификация, стр. 14) считается, что удельная поверхность однородной породы составляет: для псаммитов менее 950 м2/м3, для алевритов 950-2300 м2/м3, для пелитов более 2300 м2/м3.
Экспериментально измерить удельную поверхность реальных коллекторов очень сложно, в силу её неоднородности. Удельная поверхность неоднородной породы, когда ни одна из указанных фракций не достигает 50 %, колеблется в пределах 900-2100 м2/м3.
Для сравнительных количественных оценок коллекторов было введено понятие "фиктивный грунт". Под фиктивным грунтом предполагается коллектор, сложенный частицами шарообразной формы при квадратной или ромбической укладке (см. рис. 1.9). В 1 м3 породы (V) такой структуры полная поверхность шаров составит площадь (S) и удельную поверхность соответственно:
S = 6·(1-m)/d, Sуд = S/V (1.44)
где S – площадь поверхности, м2;
m – пористость, м3;
d – диаметр, м;
Sуд – удельная поверхность, м2/м3.
В коллекторах всегда присутствуют поры различного диаметра. Удельная поверхность зависит и от фазовой проницаемости и от адсорбционной способности пород. Обычно оценивают удельную поверхность пород по различным эмпирическим соотношениям, функционально зависящих от величин пористости (m) и проницаемости (kпр), например, по одному из вариантов формулы Козени:
Sуд = 7·105·(m·√m)/(√kпр). (1.45)
Или по выражению, предложенному К.Г. Оркиным:
Sуд = с·m·√(m/kпр), (1.46)
где с – поправочный коэффициент, который учитывает отклонения формы частиц от шарообразной и зависит от величины эффективного диаметра частиц (dэф.) для реальных коллекторов (см. рис. 1.7).
Для мелкопористых адсорбентов и существенно отличающихся по размерам адсорбируемых молекул наблюдаются значительные отклонения в величинах удельной поверхности (явление это носит название ультрапористости).
Чтобы представить, какова удельная поверхность естественных пород, подсчитаем общую поверхность песчинок (шаровых) радиусом r = 0,1 мм в 1 м3 песка.
Поверхность одной песчинки будет равна:
,
а
объем
.
Если пористость фиктивного грунта, сложенного песчинками одинакового диаметра, равна т, то объем, занятый песчинками в единице объема породы, будет V = 1—т, а число песчинок в единице объема породы будет равно:
.
Очевидно, что суммарная поверхность всех песчинок в единице объема породы будет равна:
,
или
,
где d — диаметр песчинок, м, S – удельная поверхность, м2/м3;
m – пористость в долях единицы.
Для песчинок радиусом r = 0,1 мм удельная поверхность составит
( при пористости m = 0,26):
,
т. е. в 1 м3 песка общая поверхность частиц составит 22 000 м2.
Очевидно, что удельная поверхность глинистых пород может достигать еще большей величины и если поверхность пористой среды нефтяного пласта после окончания эксплуатации залежи останется смоченной хотя бы тончайшей пленкой нефти, это приведет к тому, что большие количества ее не будут извлечены на поверхность .