Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

The Nitro Group in Organic Synthesis

.pdf
Скачиваний:
177
Добавлен:
15.08.2013
Размер:
4.69 Mб
Скачать

8.2 1,3-DIPOLAR CYCLOADDITION 261

(8.66)

As a new utility of nitrile oxide in organic synthesis, synthesis of medium and large rings by intramolecular nitrile oxide dimerization is reported (Eq. 8.67).102

(8.67)

Intramolecular 1,3-cycloadditions of nitrile oxides (INOC) provide a useful tool for the construction of fused cyclic ring systems. The stereochemical outcome of this reaction is presumed to be a consequence of reaction through the transition state that minimizes allylic 1,3 strain (Scheme 8.19).103

Kurth and coworkers have reported sequential 1,3-dipolar cycloadditions in the synthesis of bis-isoxazolo-substituted piperidinones (Scheme 8.20).104 The Michael addition of allyl alcohol to nitrostyrene followed by INOC gives a mixture of cisand trans-furanoisooxazoles in 88% yield. The stereoselectivity is much improved by intramolecular silynitronate cycloaddition (ISOC) (see Section 8.2.3). The use of 1,4-phenylene diisocyanate as the dehydrating agent is recommended because the resulting urea polymer can be removed by simple filtration. The introduction of allyl group and formation of the nitroacetoamide provide a precursor of an isoxazoloisooxazoline-containing tetracycle. Finally, INOC of this precursor affords a desired tetracyclic compound stereoselectively.

Scheme 8.19.

262 CYCLOADDITION CHEMISTRY OF NITRO COMPOUNDS

 

 

 

 

 

Ph

 

 

 

Ph

 

OK

 

OCN

 

NCO

N

 

 

 

 

NO2

 

 

 

NO2

 

O

O

Ph

 

 

O

 

 

Et3N

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

88% (ds = 8:1)

Ph

 

 

 

 

 

Ph

O

 

H

 

 

 

 

 

 

MgBr

 

 

 

 

 

N

 

N

 

O N

CO H

 

NO2

O

 

O

2

 

2

O

O

 

Et2O, –78 ºC

 

 

 

DCC

 

 

 

 

H

 

 

 

 

 

H

 

 

88%

 

 

 

O

 

86%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

OCN

 

 

NCO

Ph

H

 

 

 

 

 

 

O

 

 

 

 

 

 

 

N

 

 

 

Et3N

 

 

 

 

 

 

 

O

O

 

 

 

H

65%

Scheme 8.20.

INOC has been used for the synthesis of tricylic compounds having the taxane A/B ring system with an aromatic C ring (Eq. 8.68).105

 

 

 

O

O2N

 

Cl

N

 

 

N

 

 

 

Cl

NCO

 

H

Et3N, 70 ºC, 10 h

 

 

O O

 

 

O O

(8.68)

94%

A potentially useful approach to the marine alkaloid papuamine based on INOC strategy is proposed as shown in Scheme 8.21. In fact, a trans-hydrindane intermediate has been synthe-

sized in racemic form using a model sequence of reactions involving a nitrile oxide cycloaddition as a key step (Eq. 8.69).106

 

 

N

H

H

 

NH2

NO2

H

O

H

PhNCO

 

LiAlH4

Et3N

 

H

OH

 

H H

H

 

 

 

 

(8.69)

 

 

 

 

 

72%

90%

A diastereoselective synthesis of the model insect antifeedant related to 12-hydroxyazadi- radione starting from α-cyclocitral has been reported. [The key steps involve INOC and a Stille

8.2 1,3-DIPOLAR CYCLOADDITION 263

coupling reaction of a vinyl iodide with a stannylfuran (Eq. 8.70)].107 Many related syntheses by means of INOC have been reported.108

NO2

 

O N

 

 

 

H

 

 

PhNCO

 

 

 

Et3N

 

 

 

 

HO

O

 

 

O

73%

 

 

H

 

 

HO

 

H2, Pd/C

 

9 steps

 

 

H

(8.70)

H3BO3

80%

Asymmetric synthesis based on INOC using a chiral nitrile oxides is a standard method for obtaining enantiomerically pure compounds. A useful synthesis of enantiomerically pure pyranoand oxepanoisoxazole derivatives by application of INOC is presented in Eq. 8.71.109

O

 

O N

 

 

 

 

H

O

 

 

 

2

 

O

 

 

N

 

O

 

 

O

 

 

PhNCO

O

 

O

 

O

 

 

O

 

 

 

 

 

Et3N

 

 

 

 

 

O

 

 

O

O

H

O

 

HO

O

 

 

 

 

 

 

28%

(8.71)

 

 

 

 

 

 

 

 

 

 

 

 

Takahashi and coworkers have used INOC for synthesis of the chiral CD rings paclitaxel, which is an antitumor agent. Synthetic strategy starting from 2-deoxy-D-ribose is demonstrated in Scheme 8.22.110 The precursor of INOC was prepared by 1,2-addition of α,β-unsaturated ester to ketone. INOC and subsequent reductive cleavage by H2/Raney Ni afford the desired CD ring structure.

H H

H H

 

 

 

H

H

N

N

 

 

 

H

 

 

H

 

 

NHR RHN

 

 

 

 

H

 

OR RO

 

H

 

 

 

 

 

 

H H

H H

 

 

 

H

H

H

H

 

 

 

 

 

 

 

papuamine

 

 

 

 

 

 

 

 

N

 

N

 

 

C N O

 

O N C

 

 

 

 

H

 

H

H

O

O

 

H

 

 

H H

 

 

H H

 

 

H

 

H

 

 

 

 

 

 

 

 

 

 

 

NO2

O2N

 

 

 

 

 

H

 

 

H

 

 

 

 

 

 

H

H

 

 

 

Scheme 8.21.

264 CYCLOADDITION CHEMISTRY OF NITRO COMPOUNDS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CN X

 

 

 

 

 

 

 

 

 

 

AcO

O

 

 

 

 

OR

OR

 

 

 

 

EEO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OH

 

 

 

 

 

 

 

9

 

OR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B

 

 

 

 

9

 

7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

A

 

 

 

 

 

 

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

3

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

4

 

O

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

OH

 

 

 

 

 

 

D O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HO

 

 

 

 

 

H

 

 

 

 

RO

 

 

 

 

H

O

BzHN

 

OBz

H

O

OH

 

 

 

 

 

 

 

 

 

 

 

 

Ph

 

 

 

 

OAc

 

 

H2

 

 

 

 

 

 

OR OR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Paclitaxel

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Raney Ni

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B(OH)3

 

 

 

 

 

 

 

 

 

 

 

1) 1,2-addition

 

 

 

 

 

 

 

 

 

 

O

N

 

 

 

 

O

 

N

 

 

 

 

 

 

 

 

 

OTBS

 

 

 

 

 

 

 

 

 

2) DIBAL

 

 

 

 

 

 

 

 

 

 

 

 

 

INOC

 

 

 

 

 

 

 

 

3) CH =C(OMe)Me,H+

 

 

 

 

 

 

 

 

8

7

 

 

 

 

 

3

 

 

5

 

 

 

2

 

 

EtO

 

α +

O

5

 

 

 

 

 

 

0 ºC

 

4

 

OR4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OR

4

2

 

 

 

4) oxidation

 

 

 

 

 

 

 

 

 

OBn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

15min

1

H

 

 

 

 

 

 

5) oximation

 

O

 

 

 

 

 

 

 

R1O R2O OR3

 

 

 

R O R2O OR3

6) NaOCl

 

 

 

 

 

OBn

R1,R2 = C(CH3)3; R3 = R4 = Bn

 

 

 

 

 

 

 

 

 

 

 

 

1) TBSCl, quant.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2) Swern ox, 89%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OMe

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OH

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

1) m-CPBA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1) HCl/MeOH

 

 

 

 

 

 

 

Et2O•BF3

 

 

 

 

 

 

 

 

 

 

 

 

 

OH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HO

 

 

 

 

 

 

 

 

 

 

 

2) BnBr, NaH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OBn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OBn

2) LiAlH4

 

 

 

 

 

 

 

 

 

 

 

OH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OBn

 

 

 

 

 

 

 

 

 

 

 

OBn

 

 

 

 

 

OH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

92%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

83% (2 steps)

Scheme 8.22.

Evans and coworkers have reported the synthesis and absolute stereochemical assignment of (+)-miyakolide.111 Miyakolide was isolated from a sponge of the genus Polyfibrospongia by Higa et al.112 The elegant synthesis is illustrated in Scheme 8.23, in which the carbon skeleton is assembled in a convergent fashion from three fragments via esterification, [3+2] cycloaddition, and aldol reaction. Here, intermolecular and intramolecular [3+2] cycloadditions of nitrile oxides are used to assemble small components to complex large sized molecules.

1,3-Dipolar cycloaddition of nitrile oxides using chiral alkenes or chiral nitrile oxides has been extensively studied. It has been established that allylic substituents have a strong

influence in determining the π-facial selectivity and that notable high levels of diastereoselectivity (de 56–93%) are observed for cycloaddition to chiral allyl ethers.63c,113 For example,

benzonitrile oxide adds to (S)-isopropylidenebut-3-ene-1,2-diol to afford an 85:15 mixture of the isoxazolines (Eq. 8.72).114 The preferred formation of the adduct (erythro) has been rationalized by Houk et al. in terms of an inside alkoxide effect that involves allylic oxygen (Scheme 8.24).115 The diastereomeric preferences observed in cycloaddition result from the alkoxy group preference for the inside conformation and the alkyl group preference for anti. Examples of the corresponding reactions with chiral allylamine derivatives have also been reported, but, in general, the degree of selectivity is lower and less predictable.116

 

N O

 

N

O

 

O Ph C N O

Ph

O

Ph

 

O

O

 

O

+

O

(8.72)

 

 

 

85

 

:

15

 

Scheme 8.23.

265

266 CYCLOADDITION CHEMISTRY OF NITRO COMPOUNDS

Cycloaddition of nitrile oxides to alkenes with various chiral auxiliaries are summarized in Table 8.1, which shows chiral alkenes and differential excess (de).

Compared with the related reactions of nitrones, there have only appeared a few publications of metal-assisted or metal-catalyzed 1,3-dipolar cycloadditions of nitrile oxides. This is due to

Table 8.1. Asymmetric Induction in Nitrile Oxide (PhCNO) Cycloaddition to Optically Active Acrylates

Chiral alkene

de (%)

Ref.

 

H

 

 

 

O

56

117

 

 

 

O

 

 

SO2N(C6H11)2

 

 

 

O

 

 

 

N

62–90

118

 

 

S

H

 

 

O2

 

 

 

tBu

 

 

 

O

 

 

 

N

90

119

 

S

 

 

 

O2

 

 

 

O H

 

 

 

N

98

120

 

O

 

 

 

 

O Ph

 

 

BnO

O

 

 

 

O

 

 

 

N

50

121

 

 

 

H

O

 

 

 

N

 

 

 

 

90

122

H

 

 

 

 

OEt

 

 

 

O

 

 

 

O

 

 

O

N

86

123

 

 

Ph

8.2 1,3-DIPOLAR CYCLOADDITION 267

R N

C O

RO

H

anti (erythro)

R

Scheme 8.24.

reactivity of nitrile oxides or the requirement of bases such as triethylamine for generation of nitrile oxides. Kanemasa and coworkers have solved some of these problems, as shown in Eq. 8.64.99

It has recently been found that Et2Zn promotes the 1,3-dipolar cycloaddition of nitrile oxides

to allyl alcohol in the presence of catalytic amounts of diisopropyl tartrate (DIPT). By this method, 2-isoxazlines are obtained in good yields and up to 96% ee (Eq. 8.73).124a A positive

nonlinear effect (amplification of ee of the product) has been observed in this reaction. There is an excellent review on positive and negative nonlinear effects in asymmetric induction.124b

 

 

 

 

 

Zn

O

 

 

 

NOH

 

 

OiPr

 

 

 

 

R

N O O

 

 

OH

DIPT

 

 

N O

+

 

 

Zn

 

 

 

R Cl

Et2Zn

 

OiPr

 

OH

 

 

O O

 

 

 

 

R

R = p-CH3OC6H4

 

 

 

O

 

 

 

OH

 

 

 

 

 

 

 

 

 

 

 

 

(R, R)-DIPT= iPrO C

CO2iPr

 

 

 

(8.73)

 

2

 

 

 

 

 

 

 

OH

8.2.3 Nitronates

Alkyl and silyl nitronates are, in principle, N-alkoxy and N-silyloxynitrones, and they can react with alkenes in 1,3-dipolar cycloadditions to form N-alkoxy- or N-silyloxyisoxazolidine (see Scheme 8.25). The alkoxy and silyloxy groups can be eliminated from the adduct on heating or by acid treatment to form 2-isoxazolines. It should be noticed that isoxazolines are also obtained by the reaction of nitrile oxides with alkenes; thus, nitronates can be considered as synthetic equivalents of nitrile oxides. Since the pioneering work by Torssell et al. on the development of silyl nitronates, this type of reaction has become a useful synthetic tool. Recent development for generation of cyclic nitronates by hetero Diels-Alder reactions of nitroalkenes is discussed in Section 8.3.

A series of 3-substituted-2-isoxazoles are prepared by the following simple procedure; in situ conversion of nitroalkane to the silyl nitronate is followed by 1,3-dipolar cycloaddition to produce the adduct, which undergoes thermal elimination during distillation to furnish the isoxazole (Eq. 8.74).125 Isoxazoles are useful synthetic intermediates (discussed in the chapter on nitrile oxides Section 8.2.2). Furthermore, the nucleophilic addition to the C?N bond leads to new heterocyclic systems. For example, the addition of diallyl zinc to 5-aryl-4,5-dihydroi- soxazole occurs with high diastereoselectivity (Eq. 8.75).126 Numerous synthetic applications of 1,3-dipolar cycloaddition of nitronates are summarized in work by Torssell and coworker.63a

CH3NO2

Me3SiCl

N

Ph

N

 

Ph

N

Et3N

 

 

Ph

OSiMe3

 

O

 

O OSiMe3

 

O

 

 

 

 

 

 

 

 

 

 

 

 

51%

(8.74)

268 CYCLOADDITION CHEMISTRY OF NITRO COMPOUNDS

 

 

 

 

N

+

Zn

THF

 

NH

 

Ph

–78 ºC

Ph

(8.75)

2

O

 

O

 

 

 

 

 

 

 

72% (ds = 6.9:1)

Eguchi and Ohno have used silyl nitronate induced 1,3-dipolar cycloaddition for function-

alization of fullerene C60 (Eq. 8.76).127a Nitrile oxides also undergo 1,3-dipolar cycloaddition

to C60.127b

C60

MeNO2

N OSiMe

TsOH

N

 

Me3SiCl

3

 

O

 

O

 

Et3N

42% (8.76)

Nitroethane undergoes base-catalyzed addition to C60 to give 2-hydroxy-1,2-dihydrofulleryl ketoxime by way of a unique intramolecular redox process, which is not observed in normal electron deficient alkenes (Eq. 8.77).128 (See Section 4.3 Michael addition of nitroalkanes).

 

 

Me

 

C60

EtNO2

NOH

(8.77)

Et3N

OH

 

 

 

 

46%

 

Denmark and coworkers have developed an elegant method for generating cyclic nitronates using nitroalkenes as heterodienes in the Diels-Alder reaction (Eq. 8.78). The synthetic utility of this reaction is discussed in Section 8.3.

O

O

[2 + 4]

O O

 

N

 

+

N

 

(8.78)

 

 

Lewis acid

Recently, Kanemasa and coworkers found a new method for preparing cyclic nitronates. ω-Halo-α-nitropropane and -butane are cyclized with base to form cyclic nitronates which are labile 1,3-dipoles. They can be trapped by a variety of monosubstituted ethenes to give the corresponding adducts (Eq. 8.79).129a The N–O bonds in adducts are cleaved on treatment with acid to give functionalized isoxazeles. Cyclic nitronates are also prepared by intramolecular O-alkylation of ω-nitro alcohols via Mitsunobu condensation using triphenylphosphine and diethyl azodicarboxylate.128b

Another approach to cyclic nitronates has been developed by Rosini et al. in which nitro-aldol and subsequent cyclization is used as a key step. For example, 2,3-epoxy aldehydes react with ethyl nitroacetate on alumina surface in the absence of solvent to give 4-hydroxyisoxazoline 2-oxides in good yields (Eq. 8.80).130

 

 

 

 

 

 

 

 

 

 

8.2

1,3-DIPOLAR CYCLOADDITION

269

 

 

 

 

 

 

 

 

 

 

 

 

 

CO2Me

H

H

 

 

 

 

 

DBU

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NO2

 

CH2Cl2

 

 

 

O

N

 

 

 

 

 

 

 

 

CO2Me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

I

 

RT, 10 min

 

 

 

 

 

 

 

O N O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

75%

 

 

 

 

 

 

 

 

CF3CO2H

 

 

 

 

N O

 

 

 

 

 

 

 

 

 

 

 

 

HO

 

 

 

CO2Me

 

 

 

 

(8.79)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(100%)

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

O

 

O

CO2Et

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

H

Al2O3

 

 

 

O

 

N

 

 

 

 

O

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Me

 

 

 

OEt +

 

Me

 

 

 

 

OEt

 

 

 

NO2

 

26 h

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OH

OH

O

 

 

OH

OH

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

99% (ds = 1.5)

 

(8.80)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Treatment of 2-bromo aldehydes and ethyl nitroacetate with alumina gives 4-hydroxy-2- isoxazoline-2-oxides with high stereoselectivity (Eq. 8.81).131

 

O

 

 

 

 

O

 

 

 

O

 

CO2Et

Al2O3

O N

O N

 

Ph

 

 

H

+

 

 

 

 

+

 

 

 

 

 

 

 

 

 

NO2

24 h

Ph

 

 

CO2Et Ph

 

 

CO2Et

 

Br

 

 

 

 

 

 

 

 

 

 

OH

OH

 

 

 

 

 

 

 

 

 

 

 

 

 

62% (trans/cis = 9/1)

(8.81)

The products shown in Eqs. 8.80 and 8.81 are good precursors for biologically important compounds such as polyhydroxylated amino acids, aminopolyols, and amino sugars. Furthermore, 4-hydroxy-2-isoxazoline 2-oxides can be converted into tricyclic compounds via silicontethered 1,3-dipolar cycloaddition reactions, as shown in Eq. 8.82.132 The temporary silicon connection methodology gives rise to the regioand stereoselective formation of new bonds by temporarily linking together the two reactants by means of an eventually removable silicon atom.133 This strategy is very useful for the control of stereochemistry in cycloaddition reactions (also see Section 8.3).

 

O N O

 

 

 

 

O

 

CO2Et

2

 

ImH

R1

O

N

R11 O N O

Cl

Si

 

CO2Et

 

 

6

R

CO Et +

MeCN

 

2

 

R2

O

Si 7

R1

2

 

 

R

O Si

 

 

 

OH

 

 

 

 

 

 

80–99%

 

 

 

 

 

 

 

 

(8.82)

One-pot multi-bond-forming reactions are one of the ways to address the ever growing demand for efficiency in organic synthesis. Rosini and coworkers have developed (tandem) processes for the synthesis of a highly functionalized tricyclic system. The reaction is simply performed by bringing together, at room temperature, α-bromo aldehydes, ethyl

nitroacetate, and chlorodimethylvinylsilane in the presence of imidazole as the base (Eq. 8.83).134

270 CYCLOADDITION CHEMISTRY OF NITRO COMPOUNDS

 

 

O

 

CO2Et

Cl

 

 

n-C12H25 O

N O

n-C12H25

 

 

Si

ImH

 

 

 

 

 

H

+

NO

+

 

O

Si Me

 

 

 

 

 

 

 

Br

 

2

 

 

 

 

Me

 

 

 

 

 

 

 

61% (cis/trans = 1/1) (8.83)

The cleavage of the tricyclic structure such as the product presented in Eq. 8.83 leads to a linear aminopolyhydroxylated structure (Scheme 8.25).135 Two-step unfolding (silyl ether hydroxydesilylation/nitroso acetal hydrogenolysis) can be useful in the preparation of hydroxylated amino acids (Eq. 8.84).

1

CO2Et

i) KF, MCPBA, KHCO3,

 

 

CO2Et

 

 

R

O N O

 

DMF, –15 ºC

 

 

R1

O N O

O

O

R2

O

Si

ii) Ac2O, Et3N

 

 

2

 

 

NH2

 

 

 

 

 

R

OAc

OAc

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

 

 

 

 

 

5

6

OH

 

 

H2 (1 atm)

 

O

NH2

 

O

OH

 

 

 

 

 

 

 

R2

 

 

(11)

Anhydromyriocin

 

 

 

Raney-Ni

R1

 

 

OH

 

 

 

MeOH

 

 

 

OAc

 

 

 

 

 

 

 

 

OAc

 

 

 

(8.84)

 

 

 

 

 

 

 

 

 

 

 

The present tandem nitro aldol-cyclization process is used for the preparation of the enantiomerically pure 4-hydroxy-2-isoxazoline-2-ones. They are prepared starting from chiral α-mesyloxy aldehydes and ethyl nitroacetate under mild reaction conditions (Eq. 8.85).136

 

OMs

CO2Et

 

Imidazole

 

 

n-Pr

 

O

 

 

 

 

+

 

 

 

 

 

 

 

H

NO2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ O

 

 

+ O

 

 

 

 

 

O N

 

 

O N

 

 

 

n-Pr

 

CO2Et

+

n-Pr

 

 

 

 

 

 

CO2Et

 

 

 

 

 

OH

 

 

OH

 

 

 

 

trans

 

 

cis

93% (trans/cis = 43/57)

(8.85)

Hassner and coworkers have developed a one-pot tandem consecutive 1,4-addition intramolecular cycloaddition strategy for the construction of fiveand six-membered heterocycles and carbocycles. Because nitroalkenes are good Michael acceptors for carbon, sulfur, oxygen, and nitrogen nucleophiles (see Section 4.1 on the Michael reaction), subsequent intramolecular silyl nitronate cycloaddition (ISOC) or intramolecular nitrile oxide cycloaddition (INOC) provides one-pot synthesis of fused isoxazolines (Scheme 8.26). The ISOC route is generally better than INOC route regarding stereoselectivity and generality.

Michael additions of secondary allylamines to nitroalkenes followed by treatment with Me3SiCl and Et3N afford highly functionalized pyrrolidines via the stereoselective ISOC reaction (Eq. 8.86).137

Соседние файлы в предмете Химия