
- •Кубанский государственный аграрный университет
- •1.1.2. Изобразите геометрически множество истинности одноместных предикатов g(X) и p(X), если:
- •1.1.3. Изобразите геометрически множество истинности предиката p(X), решив систему неравенств:
- •1.1.4. Постройте матрицу двуместного предиката p(X,y) и проверьте решение геометрически:
- •1.1.5. Изобразите геометрически множество истинности двуместного предиката a(X, y).
- •1.1.6. Изобразите геометрически множество истинности двуместного предиката q(X,y).
- •1.2. Операции над предикатами и кванторами
- •1. Пусть предикат q(X,y) определен на конечных множествах:
- •1.3. Виды форм логики предикатов
- •1. Приведите формулу логики предикатов к приведенной форме:
- •2. Приведите формулу логики предикатов к приведенной форме, где X,y,z– вещественные переменные, применив отрицание к формуле:
- •3. Приведите формулу логики предикатов к предваренной нормальной форме XyP(X, y) XyQ(X, y).
- •1.3.1. Приведите формулу логики предикатов к приведенной нормальной форме:
- •1.3.2. Приведите формулы логики предикатов к приведенной нормальной форме, где X,y,z– вещественные переменны, применив отрицание к формуле:
- •1.3.3. Приведите к предваренной нормальной форме следующие формулы логики предикатов:
- •1.4. Применение логики предикатов
- •1.4.1. Запишите аксиомы положительных величин на языке логики предикатов, используя ограниченные кванторы:
- •9)Аксиома соизмеримости отрезков
- •1.4.2. Запишите некоторые аксиомы действительных чисел на языке логики предикатов, используя ограниченные кванторы:
- •1.4.3. Подберите элементарные предикаты и запишите следующие высказывания:
- •1.4.4. Запишите определения на языке логики предикатов, используя ограниченные кванторы, и постройте их отрицания:
- •1.4.5. Запишите определения на языке логики предикатов, используя ограниченные кванторы, и постройте их отрицания:
- •1.4.6. Запишите теоремы и свойства на языке логики предикатов, используя ограниченные кванторы, и постройте их отрицания:
- •0) Основная теорема алгебры.
- •1.4.7. Запишите теоремы на языке логики предикатов, используя ограниченные кванторы, и постройте их отрицания:
- •Глава 2. Комбинаторика
- •2.2. Размещения без повторений
- •2.3. Размещения с повторениями
- •2.4. Перестановки без повторений
- •2.5. Перестановки с повторениями
- •2.6. Инверсии. Обратные перестановки
- •2.7. Сочетания без повторений
- •2.8. Сочетания с повторениями
- •2.9. Примеры решения сложных задач
- •2.10. Треугольник Паскаля. Бином Ньютона
- •1. Запишите разложение бинома:
- •2. Вычислите без калькулятора:
- •3. Запишите разложение бинома:
- •Зачетные задания по теме «Комбинаторика»
- •Глава 3. Графы
- •3.1. Виды графов. Изоморфизм графов.
- •Основные положения о вершинах графа:
- •Алгоритм распознавания изоморфизма двух графов g1(X, e)и g2(y,e)
- •2. Докажите, что графы g1(x1, e1) и g2(y2, e2) изоморфны.
- •3. Решите задачу по вычислению валентности вершин графа
- •4. Решите задачу по выявлению связности компонент графа
- •3.1.5. Определите виды графов и подсчитайте валентность вершин:
- •3.1.6. Определите виды графов и подсчитайте валентность вершин:
- •3.1.7. Решите задачи по вычислению валентности вершин графа:
- •3.1.8. Решите задачи по вычислению валентности вершин графа:
- •3.1.9. Решите задачи по выявлению связности графа:
- •3.2. Операции над графами
- •3.2.1. Пусть заданы два графа g1(v1, e1) и g2(v2, e2). Изобразите геометрически объединение, пересечение и сумму по модулю два.
- •3.3. Представление графов в пэвм
- •3.3.1. Неориентированные графы
- •Способы задания графа:
- •Свойства матрицы смежности:
- •Свойства матрицы инцидентности:
- •2. Граф g(V,e): задан геометрически.
- •3. Графы g1(v1,e1) и g2(v2,e2) заданы геометрически.
- •3.3.1.2. Постройте для графа g(V,e), заданного геометрически
- •3.3.1.3. Дана матрица смежности графа. Задайте граф геометрически. Укажите: 1) матрицу инцидентности; 2) валентность вершин. 7)
- •Свойства матрицы инцидентности:
- •1. Орграф g1(V,e) задан геометрически. Постройте для орграфа:
- •2. Решите следующую задачу по обходу графов:
- •3.3.2.2. Орграф задан геометрически. Укажите валентность вершин. Постройте матрицу смежности орграфа.
- •3.3.2.3. Дана матрица смежности орграфа. А) Задайте орграф геометрически, в) постройте матрицу инцидентности.
- •3.3.2.4. Дана матрица инцидентности орграфа. А) Задайте орграф геометрически, в) постройте матрицу смежности.
- •3.3.2.5. Решите следующие задачи по обходу графов:
- •Аркадий, Борис. Владимир, Григорий и Дмитрий при встрече обменялись рукопожатиями (каждый пожал руку каждому по одному разу). Сколько всего рукопожатий было сделано?
- •3.3.2.6. Решите следующие задачи по обходу графов:
- •3.4. Задачи оптимизации на графах
- •3. Задайте граф геометрически и решите задачу:
- •3.5. Эйлеровы и гамильтоновы графы
- •Критерий эйлеровости графа
- •1. Каждое ребро полного графа с 11 вершинами покрашено в один из двух цветов: красный или синий. Докажите, что либо "красный", либо "синий" граф не является плоским. 7)
- •3.5.3. Граф задан геометрически. Выпишите гамильтонов цикл у данного графа, если он есть:
- •Глава 4. Автоматы
- •4.1. Задачи анализа автоматов
- •4.2. Задачи синтеза автоматов
- •Глава 5. Алгоритмы
- •5.1.1. Опишите алгоритмы в словесной форме:
- •5.1.2. Опишите алгоритмы в словесно-формульной форме:
- •5.2. Виды алгоритмов
- •5.2.1. Линейные алгоритмы
- •1. Опишите графическим способом алгоритм расчета нормы расхода гербицида (л/га) по формуле:.
- •1. Опишите алгоритмы в графической форме, в которых переменной d присваивают:
- •2. Опишите алгоритмы в графической форме. Даны положительные вещественные числа X и y. Присвойте целой переменной z:
- •5.2.2. Разветвляющиеся алгоритмы
- •1. Опишите графическим способом алгоритм вычисления значения выражения:
- •4. Даны действительные числа X, y и z. Вычислите:
- •5.2.3. Циклические алгоритмы
- •Выход из цикла Выход из цикла
- •1.Составьте блок-схему алгоритма вычисления среднеквадратической взвешенной по формуле:
- •2.Составьте блок-схему алгоритма вычисления суммы кубов последовательности, состоящей из положительных чисел до первого введенного отрицательного числа.
- •5.3. Применение теории алгоритмов. Машины Тьюринга
- •1. Пусть требуется добавить 1 к натуральному числу n, представленному на ленте машины Тьюринга в двоичной системе счисления, то есть в алфавите {0,1}.
- •3. Составьте программу машины Тьюринга, подсчитывающую число вхождений символа a в слово р в алфавите {a, b, c}.
- •5.3.1. Постройте машину Тьюринга,
- •5.3.2. Постройте машину Тьюринга, подсчитывающую
- •5.3.3. Постройте машину Тьюринга, осуществляющую перевод натурального числа n
- •5.3.4. Постройте машину Тьюринга,
1.1.5. Изобразите геометрически множество истинности двуместного предиката a(X, y).
если x, y (-2, 13]; |
1) A(x, y)=”3x > -1/2y”, если x, y (-5, 11); |
2) A(x, y)=”-1/4x 2y”, если x, y [-4, 9]; |
3) A(x, y)=”10x 1/2y”, если x, y (-10, 5); |
4) A(x, y)=”5x > 1/2y”, если x, y [-12, 3); |
Y
X
|
5) A(x, y)=”- 1/10x 5y”, если x, y (-1, 15); | |
6) A(x, y)=”3x 5/3y”, если x, y [-9, 4]; | |
7) A(x, y)=”-3x < 2y”, если x, y [-10, 5); | |
8) A(x, y)=”1/6x >- 12y”, если x, y [-1, 14); 9) A(x, y)=” -4x 2/3y”, если x, y [-8, 6]; |
1.1.6. Изобразите геометрически множество истинности двуместного предиката q(X,y).
0) Q(x, y)=”1/4x2 <2y”, если x, y(-1,6); |
Y
0
X
|
1) Q(x, y)=”-4x2<2y”, если x,y(-4, 8]; | |
2) Q(x, y)=”-6x2 3y”,если x, y [-2, 7]; | |
3) Q(x, y)=”-5x2 2y”, если x, y[-3,7); | |
4) Q(x, y)=”3x2<-2y”, если x, y (-2, 6); | |
5)Q(x, y)=”- 6x2 >3y”, если x, y (-4, 5]; | |
6) Q(x, y)=”7x2 -3y”, если x, y [-4, 5]; | |
7) Q(x, y)=”-4x >1/ 2y”, если x, y (-7,1); | |
8)Q(x, y)=”6x2>- 5y”, если x, y [-3, 4]; 9)Q(x, y)=” 8x2 1/6y”, если x, y[-3, 8); |
1.2. Операции над предикатами и кванторами
Все логические операции логики высказываний справедливы и для предикатов (отрицание, конъюнкция, дизъюнкция, импликация и эквиваленция). Квантор — общее название для логических операций, ограничивающих область истинности какого-либо предиката.В математической логике приписывание квантора к формуле называется связыванием, а переменную, к которой он относится, называют связанной иначе свободной. Например, в предикате x A(x, y)z B(c, z) переменные x и z - связанные, а переменные у и z – свободные.
Чаще всего используют два вида кванторов:
Название |
Прочтение |
Обозначение |
Квантор общности |
«все», «всякий», «каждый», «любой» |
|
Квантор существования |
«существует», «найдется», «хотя бы один» |
|
Пусть задан одноместный предикат P(x) на множестве Х = {a1, a2, a3, a4}, тогда:xP(x)=P(a1)&P(a2)&P(a3)&P(a4); xP(x)=P(a1)P(a2)P(a3)P(a4).
Говорят, что у квантора всеобщности конъюнктивная природа, а у квантора существования – дизъюнктивная. Квантор уменьшает число свободных переменных в логическом выражении и превращает трёхместный предикат в двухместный, двухместный — в одноместный, одноместный — в высказывание.
Примеры выполнения заданий