
- •Кубанский государственный аграрный университет
- •1.1.2. Изобразите геометрически множество истинности одноместных предикатов g(X) и p(X), если:
- •1.1.3. Изобразите геометрически множество истинности предиката p(X), решив систему неравенств:
- •1.1.4. Постройте матрицу двуместного предиката p(X,y) и проверьте решение геометрически:
- •1.1.5. Изобразите геометрически множество истинности двуместного предиката a(X, y).
- •1.1.6. Изобразите геометрически множество истинности двуместного предиката q(X,y).
- •1.2. Операции над предикатами и кванторами
- •1. Пусть предикат q(X,y) определен на конечных множествах:
- •1.3. Виды форм логики предикатов
- •1. Приведите формулу логики предикатов к приведенной форме:
- •2. Приведите формулу логики предикатов к приведенной форме, где X,y,z– вещественные переменные, применив отрицание к формуле:
- •3. Приведите формулу логики предикатов к предваренной нормальной форме XyP(X, y) XyQ(X, y).
- •1.3.1. Приведите формулу логики предикатов к приведенной нормальной форме:
- •1.3.2. Приведите формулы логики предикатов к приведенной нормальной форме, где X,y,z– вещественные переменны, применив отрицание к формуле:
- •1.3.3. Приведите к предваренной нормальной форме следующие формулы логики предикатов:
- •1.4. Применение логики предикатов
- •1.4.1. Запишите аксиомы положительных величин на языке логики предикатов, используя ограниченные кванторы:
- •9)Аксиома соизмеримости отрезков
- •1.4.2. Запишите некоторые аксиомы действительных чисел на языке логики предикатов, используя ограниченные кванторы:
- •1.4.3. Подберите элементарные предикаты и запишите следующие высказывания:
- •1.4.4. Запишите определения на языке логики предикатов, используя ограниченные кванторы, и постройте их отрицания:
- •1.4.5. Запишите определения на языке логики предикатов, используя ограниченные кванторы, и постройте их отрицания:
- •1.4.6. Запишите теоремы и свойства на языке логики предикатов, используя ограниченные кванторы, и постройте их отрицания:
- •0) Основная теорема алгебры.
- •1.4.7. Запишите теоремы на языке логики предикатов, используя ограниченные кванторы, и постройте их отрицания:
- •Глава 2. Комбинаторика
- •2.2. Размещения без повторений
- •2.3. Размещения с повторениями
- •2.4. Перестановки без повторений
- •2.5. Перестановки с повторениями
- •2.6. Инверсии. Обратные перестановки
- •2.7. Сочетания без повторений
- •2.8. Сочетания с повторениями
- •2.9. Примеры решения сложных задач
- •2.10. Треугольник Паскаля. Бином Ньютона
- •1. Запишите разложение бинома:
- •2. Вычислите без калькулятора:
- •3. Запишите разложение бинома:
- •Зачетные задания по теме «Комбинаторика»
- •Глава 3. Графы
- •3.1. Виды графов. Изоморфизм графов.
- •Основные положения о вершинах графа:
- •Алгоритм распознавания изоморфизма двух графов g1(X, e)и g2(y,e)
- •2. Докажите, что графы g1(x1, e1) и g2(y2, e2) изоморфны.
- •3. Решите задачу по вычислению валентности вершин графа
- •4. Решите задачу по выявлению связности компонент графа
- •3.1.5. Определите виды графов и подсчитайте валентность вершин:
- •3.1.6. Определите виды графов и подсчитайте валентность вершин:
- •3.1.7. Решите задачи по вычислению валентности вершин графа:
- •3.1.8. Решите задачи по вычислению валентности вершин графа:
- •3.1.9. Решите задачи по выявлению связности графа:
- •3.2. Операции над графами
- •3.2.1. Пусть заданы два графа g1(v1, e1) и g2(v2, e2). Изобразите геометрически объединение, пересечение и сумму по модулю два.
- •3.3. Представление графов в пэвм
- •3.3.1. Неориентированные графы
- •Способы задания графа:
- •Свойства матрицы смежности:
- •Свойства матрицы инцидентности:
- •2. Граф g(V,e): задан геометрически.
- •3. Графы g1(v1,e1) и g2(v2,e2) заданы геометрически.
- •3.3.1.2. Постройте для графа g(V,e), заданного геометрически
- •3.3.1.3. Дана матрица смежности графа. Задайте граф геометрически. Укажите: 1) матрицу инцидентности; 2) валентность вершин. 7)
- •Свойства матрицы инцидентности:
- •1. Орграф g1(V,e) задан геометрически. Постройте для орграфа:
- •2. Решите следующую задачу по обходу графов:
- •3.3.2.2. Орграф задан геометрически. Укажите валентность вершин. Постройте матрицу смежности орграфа.
- •3.3.2.3. Дана матрица смежности орграфа. А) Задайте орграф геометрически, в) постройте матрицу инцидентности.
- •3.3.2.4. Дана матрица инцидентности орграфа. А) Задайте орграф геометрически, в) постройте матрицу смежности.
- •3.3.2.5. Решите следующие задачи по обходу графов:
- •Аркадий, Борис. Владимир, Григорий и Дмитрий при встрече обменялись рукопожатиями (каждый пожал руку каждому по одному разу). Сколько всего рукопожатий было сделано?
- •3.3.2.6. Решите следующие задачи по обходу графов:
- •3.4. Задачи оптимизации на графах
- •3. Задайте граф геометрически и решите задачу:
- •3.5. Эйлеровы и гамильтоновы графы
- •Критерий эйлеровости графа
- •1. Каждое ребро полного графа с 11 вершинами покрашено в один из двух цветов: красный или синий. Докажите, что либо "красный", либо "синий" граф не является плоским. 7)
- •3.5.3. Граф задан геометрически. Выпишите гамильтонов цикл у данного графа, если он есть:
- •Глава 4. Автоматы
- •4.1. Задачи анализа автоматов
- •4.2. Задачи синтеза автоматов
- •Глава 5. Алгоритмы
- •5.1.1. Опишите алгоритмы в словесной форме:
- •5.1.2. Опишите алгоритмы в словесно-формульной форме:
- •5.2. Виды алгоритмов
- •5.2.1. Линейные алгоритмы
- •1. Опишите графическим способом алгоритм расчета нормы расхода гербицида (л/га) по формуле:.
- •1. Опишите алгоритмы в графической форме, в которых переменной d присваивают:
- •2. Опишите алгоритмы в графической форме. Даны положительные вещественные числа X и y. Присвойте целой переменной z:
- •5.2.2. Разветвляющиеся алгоритмы
- •1. Опишите графическим способом алгоритм вычисления значения выражения:
- •4. Даны действительные числа X, y и z. Вычислите:
- •5.2.3. Циклические алгоритмы
- •Выход из цикла Выход из цикла
- •1.Составьте блок-схему алгоритма вычисления среднеквадратической взвешенной по формуле:
- •2.Составьте блок-схему алгоритма вычисления суммы кубов последовательности, состоящей из положительных чисел до первого введенного отрицательного числа.
- •5.3. Применение теории алгоритмов. Машины Тьюринга
- •1. Пусть требуется добавить 1 к натуральному числу n, представленному на ленте машины Тьюринга в двоичной системе счисления, то есть в алфавите {0,1}.
- •3. Составьте программу машины Тьюринга, подсчитывающую число вхождений символа a в слово р в алфавите {a, b, c}.
- •5.3.1. Постройте машину Тьюринга,
- •5.3.2. Постройте машину Тьюринга, подсчитывающую
- •5.3.3. Постройте машину Тьюринга, осуществляющую перевод натурального числа n
- •5.3.4. Постройте машину Тьюринга,
2.7. Сочетания без повторений
Сочетаниями из
n элементов по m (m
n)
называются неупорядоченные m-элементные
выборки из данных n элементов.
Задания для самостоятельного выполнения
Составьте все сочетания из трех букв А, В, С по две буквы.
У 6 взрослых и 11 детей обнаружены признаки инфекционного заболевания. Чтобы проверить заболевание, следует взять выборочный анализ у 2 взрослых и 3 детей. Сколькими способами можно это сделать?
Сколькими способами можно группу из 20 студентов разделить на две подгруппы так, чтобы в одной группе было 13, а в другой 7 человек?
На книжной полке стоят 3 книги по алгебре, 4 книги по геометрии и 5 книг по литературе. Сколькими способами можно взять с полки три книги по математике?
Учащийся хочет использовать для раскраски географической контурной карты 4 краски из 6, которые он имеет в своем распоряжении. Сколькими способами он может выбрать 4 краски из 6?
Даны две параллельные прямые. На одной из них имеется 10 точек, а на другой - 20. Сколько существует треугольников с вершинами в данных точках?
Сколькими способами можно распределить 28 костей домино между 4 игроками так, чтобы каждый получил 7 костей?
В классе 12 юношей и 13 девушек. Сколькими способами из них можно выбрать четырех учащихся для дежурства на вечере, если а) освободить девушек; б) юноши и девушки?
Сколькими способами абитуриент может выбрать 3 ВУЗа из 5 для подачи документов?
Из двух математиков и десяти экономистов надо составить комиссию в составе восьми человек. Сколькими способами может быть составлена комиссия, если в нее должен входить хотя бы один математик?
2.8. Сочетания с повторениями
Сочетаниями с повторениями из n по m называются неупорядоченные m-элементные выборки, в которых элементы могут повторяться.
Задания для самостоятельного выполнения
В почтовом отделении имеются открытки 3 видов. Сколькими способами можно купить набор из 6 открыток?
Сколькими способами можно выбрать четыре из четырех пятикопеечных монет и из четырех двухкопеечных монет?
В хлебном отделе имеются булки белого и черного хлеба. Сколькими способами можно купить 8 булок хлеба?
Сколько имеется костей в обычной игре "домино"?
Сколько вариантов строения ДНК Шубуршунчика обворожительного может быть, если длина цепи 1000 нуклеотидов (нуклеотиды 4 видов: А, Т, Г, Ц)?
Сколько всего чисел можно составить из цифр 1, 2, 3, 4, 5, в каждом из которых цифры расположены в неубывающем порядке?
Шесть пассажиров садятся на остановке в трамвайный поезд, состоящий из трех трамвайных вагонов. Сколькими различными способами могут они распределиться в каждом из 3 вагонов?
Как велико число отличных друг от друга результатов бросаний двух одинаковых кубиков?
Сколькими способами можно выбрать 7 крупных апельсинов из 2 имеющихся на рынке сортов?
В магазине продаются белые, черные и красные носки. Сколькими способами можно купить 5 пар?
2.9. Примеры решения сложных задач
Приведем в систему полученные формулы всех 6 видов комбинаций с повторениями и без повторений, представив алгоритм определения вида комбинации (см. рис. 1).
Задания для самостоятельного выполнения
Из 10 роз и 8 георгинов нужно составить букет так, чтобы в нем было 2 розы и 3 георгина. Сколькими способами это можно сделать?
Собрание из 40 человек избирает председателя, секретаря и трех членов редакционной комиссии. Сколько существует возможностей выбора этих пяти человек?
Сколькими способами можно расставить 8 томов энциклопедии на книжной полке так, чтобы первый и второй тома:
а) стояли рядом; б) не стояли рядом?
На окружности расположено 20 точек. Сколько существует вписанных треугольников с вершинами в этих точках?
Сколько существует номерных знаков для автомобилей, состоящих из двух букв с последующими четырьмя цифрами, если буквы могут повторяться, а цифры — нет?
Лифт, в котором находится восемь пассажиров, останавливается на шести этажах. Пассажиры выходят группами по одному, три и четыре человека. Сколькими способами это может произойти, если на каждом этаже может выйти только одна группа пассажиров, при этом порядок выхода пассажиров одной группы не имеет значения?
В алфавите племени Бум-Бум шесть букв. Словом является любая последовательность из шести букв, в которой есть хотя бы две одинаковые буквы. Сколько слов в языке племени Бум-Бум?
В стране 20 городов, каждые два из которых соединены авиалинией. Сколько авиалиний в этой стране?
На глобусе проведены 17 параллелей и 24 меридиана. На сколько частей разделена поверхность глобуса? Меридиан — это дуга, соединяющая Северный полюс с Южным. Параллель — это окружность, параллельная экватору (экватор тоже является параллелью).
Указание. Решите задачу для двух меридианов (0o и 180o) и одной параллели (экватора).
У людоеда в подвале томятся 25 пленников.
а) Сколькими способами он может выбрать трех из них себе на завтрак, обед и ужин? б) Сколько есть способов выбрать 3-х, чтобы отпустить на свободу?
Рис. 1. Алгоритм определения вида комбинации