- •Оглавление
- •Задания для самостоятельного выполнения
- •1. Задайте множество а перечислением его элементов:
- •3. Пусть (X, y ) - координаты точек плоскости. Укажите штриховкой множествa a b и a b:
- •Практическое занятие №2. Операции над множествами Задания для самостоятельного выполнения
- •1. Изобразите с помощью диаграмм Эйлера-Венна в двух вариантах расположения следующие множества:
- •Практическое занятие №3. Равносильные преобразования множеств
- •Задания для самостоятельного выполнения
- •1. Докажите тождества:
- •Практическое занятие №4. Отображение и отношение множеств
- •Задания для самостоятельного выполнения
- •1. Для отображения f: {10,20,30,40} {а,б,в,г}, заданного рисунком, найдите f({10,40}), f({10,20,30}), f - 1(б), f - 1 ({а,в}), f - 1 ({б,в,г}).
- •3. Выясните, к какому типу относятся отображения f1: а в и f2: а в.
- •4. Пусть f: {1,2,3} {1,2,3}, g: {1,2,3} {1,2,3}, h: {1,2,3} {1,2,3} – отображения, показанные на рисунке:
- •Контрольные вопросы по теме «Элементы теории множеств»
- •Глава 2. Элементы математической логики Практическое занятие №6. Основы алгебры логики
- •1. Элементы логики высказываний
- •2. Равносильные преобразования формул алгебры логики
- •Задания для самостоятельного выполнения
- •1. Переформулируйте высказывания, если необходимо. Разбейте составные высказывания на простые и запишите их с помощью логической символики. Постройте таблицу истинности.
- •2. Вычислите значения выражений:
- •3. Постройте таблицы истинности формулы алгебры логики:
- •Практическое занятие №7. Основы алгебры логики
- •Задания для самостоятельного выполнения
- •1. Найдите суперпозицию функций для формул:
- •2. Постройте канонические формы для функций:
- •3. С помощью теоремы о полноте установите полноту системы:
- •4. Булевская функция f(X, y, z) задана таблично. Представьте эту же функцию формулой логики и функциональной схемой:
- •Практическое занятие №9. Применение алгебры логики
- •1. Минимизация логических функций
- •2. Применение булевых функций для анализа и синтеза дискретных устройств. Упрощение и преобразование комбинационных схем
- •3. Применение булевых функций для анализа и синтеза релейно-контактных схем. Упрощение и преобразование релейно-контактных схем.
- •Задания для самостоятельного выполнения
- •1. Минимизируйте методом Квайна - МакКласски булеву функцию f(x1, x2 ,x3, x4) , заданную таблицей истинности:
- •2. Укажите функцию f(x1, x2, x3, x4), реализуемую схемой из функциональных элементов:
- •3. Требуется произвести анализ и, если возможно, упрощение переключательных схем, приведенных на следующих рисунках:
- •Практическое занятие №10. Применение алгебры логики
- •Контрольные вопросы на тему: «Логические основы информатики»
- •Глава 3. Элементы логики предикатов Практическое занятие №11. Понятие предиката.
- •1. Постройте матрицу одноместного предиката р(X), если:
- •Задания для самостоятельного выполнения
- •1.Постройте матрицу одноместного предиката q(X), если:
- •2. Изобразите геометрически множество истинности одноместных предикатов g(X) и p(X), если:
- •3. Изобразите геометрически множество истинности предиката p(X), решив систему неравенств:
- •4. Изобразите геометрически множество истинности двуместного предиката a(X, y).
- •5. Изобразите геометрически множество истинности двуместного предиката q(X,y).
- •Практическое занятие №12. Операции над предикатами и кванторами.
- •1. Пусть предикат q(X,y) определен на конечных множествах:
- •Задания для самостоятельного выполнения
- •Практическое занятие №13. Формулы логики предикатов.
- •1. Приведите формулу логики предикатов к приведенной форме:
- •3. Приведите формулу логики предикатов к предваренной нормальной форме XyP(X, y) XyQ(X, y).
- •Задания для самостоятельного выполнения
- •Практическое занятие №13. Применение логики предикатов.
- •Задания для самостоятельного выполнения
- •1. Запишите аксиомы положительных величин на языке логики предикатов, используя ограниченные кванторы:
- •2. Запишите некоторые аксиомы действительных чисел на языке логики предикатов, используя ограниченные кванторы:
- •3. Подберите элементарные предикаты и запишите следующие высказывания:
- •5. Запишите определения на языке логики предикатов, используя ограниченные кванторы, и постройте их отрицания:
- •6. Запишите теоремы и свойства на языке логики предикатов, используя ограниченные кванторы, и постройте их отрицания:
- •0) Основная теорема алгебры.
- •7. Запишите теоремы на языке логики предикатов, используя ограниченные кванторы, и постройте их отрицания:
- •Глава 4. Элементы теории алгоритмов
- •Задания для самостоятельного выполнения
- •1. Опишите алгоритмы в словесной форме:
- •2. Опишите алгоритмы в словесно-формульной форме:
- •4.2.Практическое занятие №15. Виды алгоритмов.
- •1. Опишите графическим способом алгоритм расчета нормы расхода гербицида (л/га) по формуле:.
- •Задания для самостоятельного выполнения
- •2. Опишите алгоритмы в графической форме. Даны положительные вещественные числа X и y. Присвойте целой переменной z:
- •1. Опишите графическим способом алгоритм вычисления значения выражения:
- •Задания для самостоятельного выполнения
- •4. Даны действительные числа X, y и z. Вычислите:
- •Практическое занятие №16. Виды алгоритмов.
- •1.Составьте блок-схему алгоритма вычисления среднеквадратической взвешенной по формуле:
- •2.Составьте блок-схему алгоритма вычисления суммы кубов последовательности, состоящей из положительных чисел до первого введенного отрицательного числа.
- •Задания для самостоятельного выполнения
- •Практическое занятие №17. Машина Тьюринга.
- •1. Пусть требуется добавить 1 к натуральному числу n, представленному на ленте машины Тьюринга в двоичной системе счисления, то есть в алфавите {0,1}.
- •3. Составьте программу машины Тьюринга, подсчитывающую число вхождений символа a в слово р в алфавите {a, b, c}.
- •Задания для самостоятельного выполнения
- •1. Постройте машину Тьюринга,
- •3. Постройте машину Тьюринга, осуществляющую перевод натурального числа n
- •4. Постройте машину Тьюринга,
- •Рекомендуемая литература
Задания для самостоятельного выполнения
1. Минимизируйте методом Квайна - МакКласски булеву функцию f(x1, x2 ,x3, x4) , заданную таблицей истинности:
|
x4x3x2x1 |
f0 |
f1 |
f2 |
f3 |
f4 |
f5 |
f6 |
f7 |
f8 |
f9 |
|
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 |
11 000 101 0110 0 000 |
0 00 111 0 1 0 0 001001 |
0 1 1000100 0110 0 10 |
100 1 0 1 0 1 0 0 0 0 0 0 1 1 |
0 1 0 1 0 000110 01100 |
0 011 0 1 0 1 0 0110 000 |
11 001000010 01001 |
0 00 1 0 1 0010110100 |
0 1 11 000 1 0110 0 000 |
100011 000 0 010 0 1 1 |
Решение:
|
Номер группы |
Двоичные номера наборов единицы |
Номер группы |
Двоичные номера наборов единицы |
|
0 |
|
|
|
|
1 |
|
|
|
|
2 |
|
|
|
|
3 |
|
|
|
|
4 |
|
|
|

|
Простые импликанты |
Наборы единицы | |||||||
|
|
|
|
|
|
|
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
МДНФ=
2. Укажите функцию f(x1, x2, x3, x4), реализуемую схемой из функциональных элементов:
F(x1, x2, x3, x4) =
x1 x2 x3 x4
&
1









F(x1, x2, x3, x4) =
x1
x2 x3
x4
&


1
1


2) F(x1, x2, x3, x4) =
x1 x2 x3 x4

1

1




F(x1, x2, x3, x4) =
x1
x2 x3 x4


&
1







F(x1, x2, x3, x4) =
x1 x2 x3 x4
&

1

1



F(x1, x2, x3, x4) =
x1 x2 x3 x4
1
&
&





F(x1, x2, x3, x4) =
x1
x2 x3 x4

&






1

&
&

F(x1, x2, x3, x4) =
x1
x2 x3 x4
&


1
1





F(x1, x2, x3, x4) =
x1
x2 x3 x4
&
1





F(x1, x2, x3, x4) =
x1
x2 x3
x4 
&



1


3. Требуется произвести анализ и, если возможно, упрощение переключательных схем, приведенных на следующих рисунках:
X1

X2


X3
X1 





X2 






F
Решение:
X

X


Y
Z








Z


Y 


Решение:
X2





X3


X2 


X1


X3



Решение:
X Y

Y
Z 










Z 

Y



Решение:
X2



X1 X1 





X3





F
Решение:
X
Y


Y
Z









Z
X




Y


Решение:
Z
X


Y
Z










Z

Y
X



Решение:
X3
X2 

X3













X2 X1


F
Решение:
X3



X1 X2 X2 








X3





F
Решение:
X

Z Y



Y Z










Y X




Решение:
