
- •Обслуживание трансформаторов, автотрансформаторов и шунтирующих реакторов с масляной системой охлаждения
- •Номинальный режим работы и допустимые перегрузки
- •Охлаждающие устройства и их обслуживание
- •Включение в сеть и контроль за работой
- •Включение трансформаторов на параллельную работу
- •Определение экономически целесообразного числа параллельно включенных трансформаторов
- •Регулирование напряжения и обслуживание регулирующих устройств
- •Заземление нейтралей и защита разземленных нейтралей трансформаторов от перенапряжений
- •Уход за трансформаторным маслом
- •Обслуживание маслонаполненных вводов
- •Неполадки в работе трансформаторов
- •Обслуживание синхронных компенсаторов
- •Реактивная мощность
- •Назначение и режимы работы синхронных компенсаторов
- •Регулирование напряжения и системы возбуждения
- •Система охлаждения
- •Система водоснабжения
- •Система маслоснабжения
- •Пуск и остановка синхронного компенсатора
- •Осмотры и контроль за работой
- •Обслуживание коммутационных аппаратов
- •Выключатели
- •Масляные выключатели
- •Воздушные выключатели
- •Элегазовые выключатели
- •Техника операций с выключателями
- •Разъединители, отделители и короткозамыкатели
- •Техника операций с разъединителями и отделителями
- •Установки приготовления сжатого воздуха и их обслуживание
- •Трансформаторы тока
- •Трансформаторы напряжения и их вторичные цепи
- •Конденсаторы и заградители
- •Разрядники и ограничители перенапряжений
- •Токоограничивающие реакторы
- •Силовые и контрольные кабели
- •Обслуживание распределительных устройств
- •Требования к распределительным устройствам и задачи их обслуживания
- •Шины и контактные соединения
- •Изоляторы высокого напряжения
- •Заземляющие устройства
- •Оперативная блокировка
- •Комплектные распределительные устройства внутренней и наружной установок 6-10 кВ
- •Комплектные распределительные устройства 110-220 кВ с элегазовой изоляцией
- •Обслуживание источников оперативного тока
- •Источники оперативного тока на подстанциях
- •Аккумуляторные батареи
- •Преобразователи энергии
- •Схемы аккумуляторных установок и распределения оперативного тока
- •Повреждения и утяжеленные режимы работы электрических сетей
- •Максимальная токовая и токовая направленная защиты. Максимальная токовая защита с пуском от реле минимального напряжения
- •Токовая направленная защита нулевой последовательности
- •Дистанционная защита линий
- •Продольная дифференциальная защита линий
- •Поперечная дифференциальная токовая направленная защита линий
- •Дифференциально-фазная высокочастотная защита линий
- •Дифференциальная токовая и другие виды защиты шин
- •Газовая защита трансформаторов
- •Устройство резервирования при отказе выключателей (уров)
- •Устройства автоматического повторного включения линий, шин, трансформаторов
- •Устройства автоматического включения резерва
- •Устройства автоматики на подстанциях с упрощенной схемой
- •Обслуживание устройств релейной защиты и автоматики оперативным персоналом
- •Фазировка электрического оборудования
- •Основные понятия и определения
- •Методы фазировки
- •Прямые методы фазировки
- •Косвенные методы фазировки
- •Несовпадение порядка чередования и обозначения фаз электроустановок при их фазировке
- •Оперативные переключения на подстанциях
- •Оперативные состояния оборудования
- •Организация и порядок переключений
- •Последовательность основных операций и действий при отключении и включении электрических цепей
- •Последовательность основных операций и действий при отключении и включении электрических цепей на подстанциях, выполненных по упрощенным схемам
- •Последовательность основных операций и действий на подстанциях с двумя рабочими системами шин при выводе одной из них в ремонт
- •Перевод присоединений с одной системы шин на другую без шиносоединительного выключателя в ру, где часть присоединений имеет по два выключателя на цепь
- •Последовательность операций при различных способах вывода в ремонт и ввода в работу после ремонта выключателей электрических цепей
- •Предотвращение аварий и отказов в работе оборудования
- •Замыкание фазы на землю в сетях, работающих с изолированной нейтралью и с компенсацией емкостных токов
- •Предупреждение отказов в работе выключателей и предотвращение угрозы их повреждения
- •Сокращение числа операций с шинными разъединителями
- •Недопустимость схем последовательного соединения делительных конденсаторов воздушных выключателей с трансформаторами напряжения серии нкф
- •Предупреждение аварий по вине оперативного персонала
- •Устранение аварий на подстанциях и в электрических сетях
- •Причины аварий и отказов
- •Источники информации и план действий персонала
- •Действия персонала при автоматическом отключении воздушных и кабельных линий
- •Действия персонала при автоматическом отключении трансформаторов
- •Действия персонала при автоматическом отключении сборных шин
- •Методы и приборы для определения мест повреждений на линиях электропередачи
- •Обучение персонала методам ликвидации аварий
- •Ведение оперативной документации на подстанциях
- •Оперативный журнал
- •Оперативная схема
- •Бланки переключений
- •Список литературы
- •Глава 1
- •Глава 32
- •Глава 52
- •Глава 75
- •Глава 91
- •Глава 105
- •Глава 115
- •Глава 145
- •Глава 152
- •Глава 170
- •Глава 179
- •Глава 190
Токовая направленная защита нулевой последовательности
Нулевая последовательность фаз. Согласно теории симметричных составляющих любую несимметричную систему трех токов или напряжений - обозначим их А, В, С - можно представить в виде трех систем прямой, обратной и нулевой последовательностей фаз (рис. 7.9, а-в). Первые две системы симметричны и уравновешены, последняя симметрична, но не уравновешена.
Система прямой последовательности (рис. 7.9, а) состоит из трех вращающихся векторов A1, B1, C1, равных по значению и повернутых на 120° относительно друг друга, причем вектор B1 следует за вектором А1.
Рис. 7.8. Принципиальная схема максимальной токовой защиты с пуском от реле минимального напряжения:
КА - реле тока (токовый пусковой орган); КV - реле минимального напряжения (пусковой орган по напряжению); КТ - реле времени
Система обратной последовательности (рис. 7.9, б) состоит также из трех векторов A2, B2, C2, равных по значению и повернутых на 120° относительно друг друга, но при вращении в ту же сторону, что и векторы прямой последовательности, вектор B2 опережает вектор A2 на 120°.
Система нулевой последовательности (рис. 7.9, в) состоит из трех векторов A0, B0, C0, совпадающих по фазе.
Очевидно, что сложение одноименных векторов этих трех систем дает ту несимметричную систему, которая была разложена на, ее составляющие:
В качестве примера сложение векторов фазы С выполнено на рис. 7.9, г.
Существует и метод расчета симметричных составляющих, согласно которому составляющая нулевой последовательности
Рис. 7.9. Симметричные составляющие:
а, б, в - прямой, обратной и нулевой последовательности соответственно; г - сложение векторов трех последовательностей фазы С
Рис. 7.10. Однофазное КЗ на землю на ненагруженной линии с односторонним питанием:
а - схема линии; б - векторная диаграмма напряжения и тока для точки К; в, г - векторные диаграммы напряжения и токов, построенные с помощью симметричных составляющих
Таким образом, для нахождения A0 надо геометрически сложить три составляющие вектора и взять одну треть от суммы.
Целесообразность представления несимметричных систем тремя симметричными составляющими состоит в том, что анализ и расчеты напряжений и токов для системы нулевой последовательности могут выполняться независимо от систем прямой и обратной последовательностей, что во многих случаях упрощает расчеты.
Включение же защит на составляющие нулевой последовательности дает ряд преимуществ по сравнению с включением их на полные токи и напряжения фаз для действия при КЗ на землю.
Практическое использование составляющих нулевой последовательности. Рассмотрим металлическое замыкание фазы А на землю в сети с эффективно заземленной нейтралью (рис. 7.10, а). Этот вид повреждения относится к несимметричным КЗ и характеризуется тем, что в замкнутом контуре действует ЭДС EA, под действием которой в поврежденной фазе А проходит ток IA=Ik отстающий от EA на 90°; напряжение фазы А относительно земли в месте повреждения (точка К) UAк=0, так как эта точка непосредственно соединена с землей; токи в неповрежденных фазах IB и IC отсутствуют. С учетом сказанного на рис. 7.10, б построена векторная диаграмма для точки К.
На рис. 7.10, в и г приведены векторные диаграммы напряжений и токов, построенные с помощью симметричных составляющих для того же случая однофазного КЗ.
Сравнение диаграммы, представленной на рис. 7.10, б, с диаграммами рис. 7.10, в и г показывает, что вектор Iк равен вектору 3I0, а –ЕА=UBк+ UCк=3U0к. Значит, полный ток фазы в месте повреждения может быть представлен утроенным значением тока нулевой последовательности, а ЭДС - ЕА - утроенным значением напряжения нулевой последовательности.
Практически ток нулевой последовательности получают соединением вторичных обмоток трансформаторов тока в фильтр токов нулевой последовательности (рис. 7.11). Из схемы видно, что ток в реле КА равен геометрической сумме токов трех фаз:
Ток в реле появляется только при однофазном или двухфазном КЗ на землю. Короткие замыкания между фазами являются симметричными системами, и соответственно этому ток в реле Iр=0.
Для получения напряжения нулевой последовательности вторичные обмотки трансформатора напряжения соединяют в разомкнутый треугольник (рис. 7.12) и обязательно заземляют нейтраль его первичной обмотки. В этом случае
Рис. 7.11. Соединение трансформаторов тока в фильтр токов нулевой последовательности
В нормальном режиме работы и КЗ между фазами (без земли) геометрическая сумма напряжений вторичных обмоток, соединенных в разомкнутый треугольник, равна нулю, и поэтому Up также равно нулю (рис. 7.12, б). И только при однофазных (или двухфазных) КЗ на землю на зажимах разомкнутого треугольника появляется напряжение Up=3U0 (рис. 7.12, в).
Фазные напряжения систем прямой и обратной последовательностей образуют симметричные звезды, и поэтому суммы их векторов в схеме разомкнутого треугольника всегда равны нулю.
Рис. 7.12. Соединение однофазных трансформаторов напряжении в фильтр напряжения нулевой последовательности:
а - общая схема трансформатора напряжения; б - векторные диаграммы в нормальном режиме работы; с - то же при замыкании фазы А на землю в сети с заземленной нейтралью; PV - вольтметр контроля исправности цепей вторичной обмотки
В сетях с эффективным заземлением нейтрали около 80% повреждений связано с замыканиями на землю. Для защиты оборудования применяют устройства, реагирующие на составляющие нулевой последовательности.
Схема и некоторые вопросы эксплуатации токовой направленной защиты нулевой последовательности. Принципиальная схема защиты показана на рис. 7.13. Пусковое токовое реле КА, включенное на фильтр токов нулевой последовательности, реагирует на появление КЗ на землю, когда в нулевом проводе проходит ток 3I0.
Реле мощности KW фиксирует направление мощности КЗ, обеспечивая селективность действия: защита работает при направлении мощности КЗ от шин подстанции в защищаемую линию. Напряжение 3U0 подводится к реле мощности от обмотки разомкнутого треугольника трансформатора напряжения (шинки EV, H, KV, K).
Реле времени КТ создает выдержку времени, необходимую по условию селективности.
На рис. 7.14 показано размещение токовых направленных защит нулевой последовательности в сети, работающей с заземленными нейтралями с обеих сторон рассматриваемого участка. График характеристик выдержек времени построен по встречно-ступенчатому принципу. Из графика видно, что каждая защита отстраивается от защиты смежного участка ступенью времени Δt=t1-t3.
Значение тока срабатывания пускового токового реле выбирается по условию надежного действия реле при КЗ в конце следующего (второго) участка сети, а также по условию отстройки от тока небаланса.
Появление тока небаланса в реле связано с погрешностью трансформаторов тока, неидентичностью трансформаторов тока, неидентичностью их характеристик намагничивания и имеет решающее значение. Чтобы не допустить действия пускового токового реле от тока небаланса, ток срабатывания реле принимают больше тока небаланса. Ток небаланса определяется для нормального рабочего режима или для режима трехфазного КЗ в зависимости от выдержки времени защиты.
При наличии в защищаемой сети автотрансформаторов, электрически связывающих сети двух напряжений, однофазное или двухфазное замыкание на землю к сети среднего напряжения приводит к появлению тока I0 в линиях высшего напряжения. Чтобы избежать ложных срабатываний защит линий высшего напряжения, уставки их защит по току срабатывания и выдержкам времени согласуют с уставками защит в сети среднего напряжения. По указанной причине избегают, как правило, заземления нейтралей обмоток звезд высшего и среднего напряжений у одного трансформатора. Заметим также, что у трансформатора со схемой соединения звезда-треугольник замыкание на землю на стороне треугольника не вызывает появления тока I0 на стороне звезды.
Ток I0 появляется в линиях при неполнофазных режимах работы участков сетей. Такие режимы могут быть кратковременными и длительными. От кратковременных неполнофазных режимов, возникающих, например, в цикле ОАПВ линии, а также АПВ при неодновременном включении трех фаз выключателя защиты отстраиваются по току срабатывания или выдержки времени защит принимаются больше, чем время tОАПВ. При возможных неполнофазных режимах работы линий (например, при пофазном ремонте под напряжением) токовые направленные защиты нулевой последовательности ремонтируемой линии и смежных участков должны проверяться и отстраиваться от несимметрии или выводиться из работы, так как они мало приспособлены для работы в таких условиях.
В процессе эксплуатации токовых защит нулевой последовательности должны строго учитываться все заземленные нейтрали автотрансформаторов и трансформаторов, являющиеся как бы источниками токов нулевой последовательности. Распределение тока I0 в сети определяется исключительно расположением заземленных нейтралей, а не генераторов электростанций.
Контроль исправности цепей напряжения разомкнутого треугольника осуществляется с помощью вольтметра, периодически подключаемого с помощью кнопки SB (см. рис. 7.12). Вольтметр измеряет напряжение небаланса, имеющего значение 1-3 В. При нарушении цепей показание вольтметра пропадает.
Наряду с рассмотренной токовой направленной защитой нулевой последовательности широкое распространение в сетях 110 кВ и выше получили направленные отсечки и ступенчатые защиты пулевой последовательности. Наиболее совершенными являются четырехступенчатые защиты, первая ступень которых обычно выполняется без выдержки времени. Первая и вторая ступени защиты предназначены для действий при замыканиях на землю в пределах защищаемой линии и на шинах противоположной подстанции. Последние ступени выполняют в основном роль резервирования.
Рис. 7.13. Схема токовой направленной защиты нулевой последовательности
7.4