- •Министерство образования и науки российской федерации
- •Введение Цели, задачи и ресурсы системы защиты информации
- •Лекция № 1
- •Раздел 1 Объекты информационной защиты
- •1.1. Основные свойства информации как предмета инженерно-технической защиты Понятие о защищаемой информации
- •Виды информации, защищаемой техническими средствами.
- •Свойства информации, влияющие на возможности ее защиты.
- •Лекция № 2
- •1.2. Демаскирующие признаки объектов защиты
- •Видовые демаскирующие признаки
- •Лекция № 3
- •1.4. Источники опасных сигналов (начало)
- •Побочные электромагнитные излучения и наводки
- •Лекция № 4
- •1.4. Источники опасных сигналов (окончание) Побочные преобразования акустических сигналов в электрические сигналы
- •Лекция № 5
- •Раздел 2 Угрозы безопасности информации
- •2.1. Виды угроз безопасности информации, защищаемой техническими средствами.
- •Источники угроз безопасности информации
- •Лекция № 6
- •2.2. Органы добывания информации Принципы добывания и обработки информации техническими средствами.
- •Классификация технической разведки
- •Лекция № 7
- •2.5. Основные способы и принципы работы средств наблюдения объектов, подслушивания и перехвата сигналов
- •2.5.1. Способы и средства наблюдения Средства наблюдения в оптическом диапазоне
- •Оптические системы
- •Визуально-оптические приборы
- •Лекция № 8
- •2.5.2. Способы и средства перехвата сигналов. Средства перехвата радиосигналов
- •Антенны
- •Радиоприемники
- •Лекция № 9
- •2.5.3. Способы и средства подслушивания акустических сигналов. Акустические приемники
- •Лекция № 10
- •3.1. Концепция инженерно-технической защиты информации
- •Принципы инженерно-технической защиты информации
- •Принципы построения системы инженерно-технической защиты информации
- •Лекция № 11
- •3.2. Способы и средства инженерной защиты и технической охраны
- •3.2.1. Концепция охраны объектов. Категорирование объектов защиты
- •Характеристика методов физической защиты информации
- •Структура системы инженерно-технической защиты информации
- •Лекция № 12
- •3.2.3. Способы и средства обнаружения злоумышленников и пожара. (начало)
- •Извещатели
- •Лекция № 13
- •3.2.3. Способы и средства обнаружения злоумышленников и пожара. (окончание)
- •Средства контроля и управления средствами охраны
- •Лекция № 14
- •3.2.4. Способы и средства видеоконтроля. Средства телевизионной охраны
- •Средства освещения
- •Лекция № 15
- •3.2.5. Способы и средства нейтрализации угроз.
- •Лекция № 16
- •3.2.6. Средства управления системой охраны.
- •Классификация средств инженерно-технической защиты информации
- •Лекция № 17
- •3.3. Способы и средства защиты информации от наблюдения
- •3.3.1. Способы и средства противодействия наблюдению в оптическом диапазоне волн.
- •Вопросы для самопроверки
- •Лекция № 18
- •3.3.2. Способы и средства противодействия радиолокационному и гидроакустическому наблюдению.
- •Лекция № 19
- •3.4. Способы и средства защиты информации от подслушивания
- •3.4.1. Способы и средства информационного скрытия акустических сигналов и речевой информации.
- •Структурное скрытие речевой информации в каналах связи
- •Лекция № 20
- •3.4.3. Способы и средства предотвращения утечки информации с помощью закладных устройств. Демаскирующие признаки закладных устройств
- •Лекция № 21
- •3.5. Способы и средства предотвращения утечки информации через побочные электромагнитные излучения и наводки Экранирование электромагнитных полей
- •Экранирование электрических проводов
- •Компенсация полей
- •Лекция № 22
- •3.6. Способы предотвращения утечки информации по материально-вещественному каналу
- •Методы защиты информации в отходах производства
- •Методы защиты демаскирующих веществ в отходах химического производства
- •Лекция № 23
- •Лекция № 24
- •4.2. Организационные и технические меры инженерно-технической защиты информации в государственных и коммерческих структурах. Контроль эффективности защиты информации.
- •Основные организационные и технические меры по обеспечению инженерно-технической защиты информации
- •Контроль эффективности инженерно-технической защиты информации
- •Лекция № 25
- •4.2. Организационные и технические меры инженерно-технической защиты информации в государственных и коммерческих структурах. Контроль эффективности защиты информации.
- •Организация инженерно-технической защиты информации на предприятиях (в организациях, учреждениях)
- •Лекция № 26
- •Раздел 5. Основы методического обеспечения инженерно-технической защиты информации
- •5.1. Системный подход к инженерно-технической защите информации. Основные положения системного подхода к инженерно-технической защите информации
- •Лекция № 27
- •5.2. Принципы моделирования объектов защиты и технических каналов утечки информации.
- •Лекция № 28
- •5.3. Моделирование угроз информации. Способы оценки угроз безопасности информации и расходов на техническую защиту.
- •Моделирование каналов несанкционированного доступа к информации
- •Моделирование каналов утечки информации
- •Лекция № 29
- •5.4. Методические рекомендации по разработке мер защиты
- •Общие рекомендации
- •Методические рекомендации по организации физической защиты источников информации
- •Рекомендации по повышению укрепленности инженерных конструкций Рекомендации по повышению укрепленности ограждения периметра предприятия (организации, учреждения)
- •Выбор технических средств охраны
- •Выбор извещателей
- •Лекция № 30
- •5.4. Методические рекомендации по разработке мер защиты
- •Выбор шлейфов
- •Выбор средств наблюдения и мест их установки
- •Основная литература
- •Дополнительная литература
- •Периодические издания
Средства освещения
Средства освещения включают:
осветительные приборы;
устройства управления освещением;
кабели электропитания.
В качестве осветительных приборов применяются светильники подвесные иконсольного типа, а такжепрожекторы. Светильники наружного освещения закрываются небьющимися колпаками (плафонами) или металлической сеткой. Прожекторпредставляет собой осветительный прибор дальнего действия, в котором свет концентрируется посредством светооптической системы — металлического зеркала или линзы, в фокусе которых размещается источник света. В зависимости от мощности прожектора диаметр отражателя составляет 25-50 см.
В качестве источников света используются различные лампы накаливания, газоразрядные лампы иИК-прожекторы.
Вакуумные, криптоновые и галогенные лампы накаливания напряжением 220 В выпускаются мощностью до 1000 Вт.Криптоновые лампы содержат нейтральный газ криптон, уменьшающий испарение вольфрама из раскаленной нити лампы. В галогенной лампе температура нити повышена на 400-500 градусов относительно температуры вакуумных, что увеличивает светоотдачу приблизительно в 1,5 раза. Сохранение более раскаленной вольфрамовой нити от перегорания в течение длительного (в 3-5 раз большего, чем вакуумных) времени эксплуатации достигается в результате так называемого галогенного цикла. С этой целью в колбу лампы вводят йод. Пары йода, взаимодействуя с парами вольфрама, образуют йодистый вольфрам — галоген, который вблизи нити при температуре 2700-2900°С разлагается на йод и вольфрам. Вольфрам оседает на нити и снова испаряется — галогенный цикл повторяется. Так как колба лампы разогревается до температуры 600-700°С, то ее изготавливают из кварцевого стекла. Она имеет меньшие размеры и не боится влаги.
Основной недостаток ламп накаливания— низкая световая отдача (10-26 лм/Вт) и сравнительно малый срок службы (1000-2000 ч).
Разрядные лампы имеют световую отдачу в 5-10 раз, а срок службы в 10-20 раз больше. В зависимости от того, что является основным источником излучения, разрядные лампы делятся на следующие группы:
газо- и паросветные, в которых излучение вызвано возбуждением атомов, молекул или рекомбинацией ионов газов, паров металлов (ртути, натрия) и их соединений;
люминесцентные, источником света которых являются люминофоры, возбуждаемые излучением разряда;
электродосветные, в которых свет излучают электроды, раскаленные в разряде до высокой температуры.
Газоразрядные лампы широко применяются для освещения улиц и открытых пространств, а люминесцентные лампы — для освещения закрытых помещений (комнат, коридоров). В зависимости от спектра излучения люминофора люминесцентные лампы делятся на лампы дневного света (ЛД) со средней цветовой температурой 6740°К, белого света (ЛБ) — 3500°К, холодного белого света (ЛХБ) — 4300°К и теплого белого света (ЛТБ) — 2700-2800°К.Для сравнения цветовая температура ламп накаливания составляет 2700-2800°К, а солнечного света в полдень — 5400-5800°К. Подцветовой понимается температура раскаленного тела, спектр излучения которого совпадает со спектром рассматриваемого источника света. Но следует иметь в виду, что люминесцентные лампы создают широкополосные электромагнитные помехи и нуждаются в специальном пускорегулирующем устройстве.
Световой поток от разрядных ламп изменяется с частотой электропитания 50 Гц, что вызывает ухудшение качества изображения при наблюдении с помощью телевизионных камер. При несовпадении частот электропитания лампы и кадровой развертки телевизионной камеры изображение на экране монитора мелькает и изменяются цвета цветного изображения. Хотя в ряде телевизионных камер принимаются меры по устранению этих недостатков, например с помощью электронного затвора, для освещения объектов телевизионного наблюдения используются чаще лампы накаливания.
Для скрытого телевизионного наблюдения за действием злоумышленника применяются также ИК-осветители. В качестве источников ИК-света применяют лампы накаливания, закрытые непрозрачными для видимого света фильтрами, и полупроводниковые приборы (светодиоды). Светодиоды по сравнению с лампамиимеют меньшие габариты, большую надежность и срок службы (5000 ч), но мощность их излучения мала. Поэтому в ИК прожекторах размещается большое количество светодиодов в виде матриц. Мощность оптического излучения ИК прожекторов составляет 50 Вт при угле рассеянии (10-20)°.
Кабели электропитания осветительных приборов прокладываются, как правило, под землей или в металлических трубах вдоль забора и стен зданий. Допускается использование воздушных сетей электропитания, расположенных на территории таким образом, чтобы исключалась возможность их повреждения, прежде всего, из-за ограждения.