- •1.Понятие числовых множеств. Действия над числовыми множествами.
- •2.Числовые промежутки. Окрестность точки.
- •3.Функция.График функции. Способы задания функции.
- •4.Основные характеристики функции: монотонность, четность, периодичность.
- •5.Обратная функция.
- •6.Сложная функция.
- •7.Основные элементарные функции; (степенная, тригонометрические, обратно-тригонометрические, показательная, логарифмическая) их свойства и графики.
- •Корень n-ой степени.
- •Корень n-ой степени, n - четное число.
- •Корень n-ой степени, n - нечетное число.
- •Степенная функция с нечетным положительным показателем.
- •Степенная функция с четным положительным показателем.
- •Степенная функция с нечетным отрицательным показателем.
- •Степенная функция с четным отрицательным показателем.
- •Степенная функция с рациональным или иррациональным показателем, значение которого больше нуля и меньше единицы.
- •Степенная функция с нецелым рациональным или иррациональным показателем, большим единицы.
- •Степенная функция с действительным показателем, который больше минус единицы и меньше нуля.
- •Степенная функция с нецелым действительным показателем, который меньше минус единицы.
- •Показательная функция.
- •Логарифмическая функция.
- •Тригонометрические функции, их свойства и графики.
- •Обратные тригонометрические функции, их свойства и графики.
- •8.Числовые последовательности.
- •Определение
- •Примеры
- •Операции над последовательностями
- •9.Предел числовой последовательности.
- •10.Предельный переход в неравенствах.
- •11.Предел функции в точке.
- •Левый и правый пределы функции
- •13.Предел функции при х→0
- •14.Бесконечно большая функция. Ответ - Бесконечно большая функция
- •15.Определение и основные свойства бесконечно малых функции.
- •16.Связь между функцией, пределом и бесконечно малой величиной.
- •17.Основные теоремы о пределах.
- •Предел монотонной функции
- •19.Первый замечательный предел.
- •Следствия из первого замечательного предела
- •20.Второй замечательный предел(б/д).
- •Следствия из второго замечательного предела
- •21.Сравнение бесконечно малых.
- •22. Основные теоремы о б.М.
- •23.Непрерывность функции в точке и на промежутке.
- •24.Точки разрыва функции и их классификация.
- •25.Основные теоремы о непрерывных функциях.
- •26.Свойства функций, непрерывных на отрезке (б/д). Ответ - Свойства функций непрерывных на отрезке:
- •27.Производная; Ее геометрический и физический смысл.
- •28.Связь между непрерывность. И дифференцируемостью функции.
- •31.Производная обратной функции.
- •32.Производные основных элементарных функций; таблица производных (вывод).
- •33.Дифференцирование неявных функций.
- •34. Дифференцирование параметрический заданных функций.
- •35.Логарифмическое дифференцирование.
- •38.Основные теоремы о дифференциалах.
- •39.Применение дифференциала к приближенным вычислениям.
- •40.Дифференциалы высших порядков. Инвариантность формы dy.
- •41.Теорема Ролля
- •54.Неопределенный интеграл: определение, геометрический смысл.
- •56. Основные свойства интеграла.
- •57. Таблица основных интегралов.
- •58.Интегрирование заменой переменной.
- •59.Интегрирование по частям
- •61.Основыне сведения о разложении многочленов
- •62.Теоремы о разложении рациональной дроби на сумму элементарных дробей
- •63.Основная тригонометрическая подстановка.
Левый и правый пределы функции
Определение
Число
называется правым
пределом функции
в
точке
,
если для![]()
такое,
что для любого
и
,
выполняется неравенство
(рис.
1). Правый предел обозначается![]()
Число
называется левым
пределом функции
в
точке
,
если для![]()
такое,
что для любого
и
,
выполняется неравенство
(рис.
2). Левый предел обозначается![]()

Левый и правый пределы функции называются односторонними пределами.
Теорема
Если существуют
и
,
причем
,
то существует и
.
Обратное утверждение также верно.
В случае, если
,
то предел
не
существует.
Пример
Задание. Найти
односторонние пределы
функции
при![]()
Решение. Правый
предел: ![]()
Левый предел: ![]()
13.Предел функции при х→0
Ответ - Рассмотрим
функцию
,
заданную на
.
Определение
Число
называется пределом
функции
на
бесконечности или при
,
если для любого
существует
число
такое,
что для всех
из
того, что
,
выполняется неравенство
.
14.Бесконечно большая функция. Ответ - Бесконечно большая функция
Определение
Функция
называется бесконечно
большой в точке
,
если для любого
существует
такое
,
что для любого
,
удовлетворяющего неравенству
,
выполняется неравенство:
.
В этом случае пишут:![]()
Пример
Бесконечно большой
функцией в точке 0 является функция ![]()
Определение
Функция
называется бесконечно
большой при
,
если для любого
существует
такое число
такое,
что для всех
из
области определения функции
,
которые удовлетворяют неравенству
,
выполняется неравенство
:![]()
Пример
Функция
является
бесконечно большой функцией при
.
15.Определение и основные свойства бесконечно малых функции.
Ответ -
Функция y=f(x) называется бесконечно
малой при x→a или при x→∞,
если
или
,
т.е. бесконечно малая функция – это
функция, предел которой в данной точке
равен нулю.
П
римеры.
Функция f(x)=(x-1)2 является бесконечно малой при x→1, так как
(см.
рис.).Функция f(x) = tgx – бесконечно малая при x→0.
f(x) = ln (1+x)– бесконечно малая при x→0.
f(x) = 1/x– бесконечно малая при x→∞.
Установим следующее важное соотношение:
Теорема. Если
функция y=f(x) представима при x→aв
виде суммы постоянного числа b и
бесконечно малой величины α(x): f (x)=b+
α(x) то
.
Обратно, если
,
то f (x)=b+α(x), где a(x) – бесконечно
малая при x→a.
Доказательство.
Докажем первую часть утверждения. Из равенства f(x)=b+α(x) следует |f(x) – b|=| α|. Но так как a(x) – бесконечно малая, то при произвольном ε найдется δ – окрестность точки a, при всех x из которой, значения a(x) удовлетворяют соотношению |α(x)|<ε. Тогда |f(x) – b|< ε. А это и значит, что
.Если
,
то при любом ε>0 для всех х из
некоторой δ – окрестность точки a будет |f(x)
– b|< ε. Но если обозначимf(x) – b= α,
то |α(x)|<ε, а это значит, что a –
бесконечно малая.
Рассмотрим основные свойства бесконечно малых функций.
Теорема 1. Алгебраическая сумма двух, трех и вообще любого конечного числа бесконечно малых есть функция бесконечно малая.
Доказательство.
Приведем доказательство для двух
слагаемых. Пусть f(x)=α(x)+β(x), где
и
.
Нам нужно доказать, что при произвольном
как угодно малом ε>0 найдется δ>0,
такое, что для x, удовлетворяющих
неравенству |x – a|<δ, выполняется |f(x)|< ε.
Итак, зафиксируем произвольное число ε>0. Так как по условию теоремы α(x) – бесконечно малая функция, то найдется такое δ1>0, что при |x – a|<δ1 имеем |α(x)|< ε/2. Аналогично, так как β(x) – бесконечно малая, то найдется такое δ2>0, что при |x – a|<δ2 имеем | β(x)|< ε/2.
Возьмем δ=min{ δ1, δ2}.Тогда в окрестности точки a радиуса δбудет выполняться каждое из неравенств |α(x)|< ε/2 и | β(x)|< ε/2. Следовательно, в этой окрестности будет
|f(x)|=| α(x)+β(x)| ≤ |α(x)| + | β(x)| < ε/2 + ε/2= ε,
т.е. |f(x)|<ε, что и требовалось доказать.
Теорема 2. Произведение бесконечно малой функции a(x) на ограниченную функцию f(x) при x→a (или при x→∞) есть бесконечно малая функция.
Доказательство. Так как функция f(x) ограничена, то существует число М такое, что при всех значениях x из некоторой окрестности точки a|f(x)|≤M. Кроме того, так как a(x) – бесконечно малая функция при x→a, то для произвольного ε>0 найдется окрестность точки a, в которой будет выполняться неравенство |α(x)|< ε/M. Тогда в меньшей из этих окрестностей имеем | αf|< ε/M= ε. А это и значит, что af – бесконечно малая. Для случая x→∞ доказательство проводится аналогично.
Из доказанной теоремы вытекают:
Следствие
1. Если
и
,
то
.
Следствие
2. Если
и c=const,
то
.
Теорема 3. Отношение бесконечно малой функции α(x) на функцию f(x), предел которой отличен от нуля, есть бесконечно малая функция.
Доказательство.
Пусть
.
Тогда 1/f(x) есть ограниченная функция.
Поэтому дробь
есть
произведение бесконечно малой функции
на функцию ограниченную, т.е. функция
бесконечно малая.
