- •1.Классический электронный газ. Теория проводимости Друде. Подвижность. Проводимость твёрдых тел.
- •Билет 2. Типы связи в твёрдых телах. Симметрия в кристаллах. Понятие кристаллической сингонии.
- •3. Статистика электронов и дырок. Функции распределения. Плотность квантовых состояний в зоне.
- •Плотность квантовых состояний
- •Функция распределения
- •Вопрос 4 .Уравнение Шредингера для электрона в кристалле. Эффективная масса.
- •5. Обратная решётка. Зоны Бриллюэна
- •6. Образование энергетических зон.
- •7. Квазичастицы в полупроводниках. Закон дисперсии. Понятие дырки. Квазиимпульс. Эффективная масса.
- •8. Квазичастицы в полупроводниках. Понятие дырки
- •9. Концентрация электронов и дырок в собственном полупроводнике
- •Определение положения уровня Ферми
- •10. Механизмы рассеяния электронов и дырок
- •11. Уравнения непр. И Пуассона. Генерация и рекомбинация.
- •Вопрос 12. Диффузионный и дрейфовый токи.
- •13. Эффект поля. Дебаевская длина экранирования.
- •14.Работа выхода в металлах и полупроводниках. Контактная разность потенциалов.
- •15. Полупроводниковые диоды.
- •17.Обеднённая область p-n-перехода. Зависимость её ширины от параметров.
- •18.Барьерная ёмкость p-n-перехода
- •19.Зонная диаграмма неравновесного p-n перехода. Квазиуровни Ферми.
- •20. Вах идеализированного диода.
- •21. Диффузионная емкость p-n перехода.
- •Вопрос 22
- •23. Пробой p-n-перехода
- •24. Биполярные транзисторы
- •25. Зонная диаграмма биполярного транзистора в схеме включения с об. Принцип действия.
- •26. Расчет вах биполярного транзистора. Граничные условия.
- •Вопрос 27
- •28. Процессы в биполярных транзисторах
- •29. Эквивалентная схема биполярного транзистора
- •30. Биполярный свч – транзистор и его характеристики.
- •31. Полевые транзисторы
- •32.Вольт-фарадная характеристика мдп транзистора.
- •33. Вах мдп-транзистора Характеристики мдп в области плавного канала
- •Характеристики мдп в области отсечки
- •34. Эффекты короткого и узкого канала в мдп-транзисторе.
13. Эффект поля. Дебаевская длина экранирования.
Рассмотрим зонную диаграмму приповерхностной области полупроводников в равновесных условиях. Процесс установления равновесия заключается в том, что каждый избыточный электрон при встрече с вакантным местом (дыркой) занимает его, в результате чего пара неравновесных носителей исчезает. Явление исчезновения пары носителей получило название рекомбинации. В свою очередь возбуждение электрона из валентной зоны или примесного уровня, сопровождающееся появлением дырки, называется генерацией носителей заряда. Рассмотрим, как будет меняться концентрация свободных носителей в приповерхностной области полупроводника, когда вблизи этой поверхности создается электрическое поле. Для примера будем считать, что электрическое поле создается заряженной металлической плоскостью с поверхностной плотностью зарядов σ. Поскольку силовые линии электрического поля должны быть замкнуты, то на поверхности полупроводника возникает равный по величине, но противоположный по знаку электрический заряд. В зависимости от знака заряда на металлической плоскости (положительной или отрицательной) экранирующий это поле заряд в приповерхностной области полупроводника также будет различных знаков.Случай, когда в приповерхностной области возрастает концентрация свободных носителей, носит название обогащение, а когда в приповерхностной области уменьшается концентрация свободных носителей – обеднение.Изменение концентрации свободных носителей в приповерхностной области полупроводника под действием внешнего электрического поля получило название эффекта поля.Количественной характеристикой эффекта поля, характеризующей глубину проникновения поля в полупроводник, является дебаевская длина экранирования. Рассмотрим случай, когда полупроводник внесен во внешнее слабое поле. Критерий слабого поля заключается в том, что возмущение потенциальной энергии невелико по сравнению с тепловой энергией, то есть величина поверхностного потенциала ys будет меньше kT/q. Воспользуемся для нахождения распределения электростатического потенциала ys в области пространственного заряда (ОПЗ) уравнением Пуассона, при этом будем считать, что ось z направлена перпендикулярно поверхности полупроводника:
(1)
где r(z) – плотность заряда в ОПЗ,es – Относительная диэлектрическая проницаемость полупроводника.
Заряд в ОПЗ состоит из заряда ионизованных доноров и заряда свободных электронов:
.
Величина
ND+ = n0.
Поскольку в нашем случае bys << 1,
то
.
Тогда
плотность объемного заряда
. (2)
Подставляя
значение r(z)
из (2) в (1), получаем:![]()
Введем
характерную величину
(2.23)
назовем еедебаевской
длиной экранирования.
Тогда
уравнение (2.22) придет к виду:
. (2.24)
Решение
дифференциального уравнения (2.24) имеет
вид:
. (2.25)
Используем
граничные условия: при
,
получаем C1 = 0,
при z = 0,
y(z) = ys
получаем С2 = ys
Таким
образом, при малом возмущении
электростатический потенциал, а
следовательно, и электрическое поле
спадают по экспоненциальному закону
вглубь полупроводника:
. (2.26)
Известно,
что если произвольная величина f(z)
описывается законом
, (2.27)
то
среднее значение z,
определяющее центроид функции f(z),
равно:
. (2.28)
Таким образом, по физическому смыслу дебаевская длина экранирования LD соответствует среднему расстоянию, на которое проникает электрическое поле в полупроводник при малых уровнях возмущения.
