Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Для студентов 1 / Физ основы механики, сборник тестов.doc
Скачиваний:
215
Добавлен:
12.04.2015
Размер:
9.35 Mб
Скачать

В случае переменной массы

,

где – реактивная сила.

При движении по кривой результирующая сила может быть разложена на две составляющие (рис. П 1.13):

; ,

где R – радиус кривизны траектории;

–тангенциальная составляющая (касательная сила);

–нормальная составляющая (центростремительная сила).

Основной закон классической динамики – инвариантен при переходе от одной инерциальной системы к другой, при этом

ma = F; ma' = F'; F = F'.

Третий закон классической динамики – силы, с которыми взаимодействуют два тела, равны по величине и противоположны по направлению. Силы действия и противодействия приложены к разным телам и никогда не уравновешивают друг друга (рис. П1.14):

F12 = -F21.

Импульс силы – мера действия силы за некоторый промежуток времени:

.

Силы инерции обусловлены ускоренным движением системы отсчета по отношению к неподвижной системе. Различают:

1) силы, действующие на тело при ускоренном поступательном движении системы отсчета (рис. П1.15):

ma = ma + Fин,

где a – ускорение тела в неинерциальной системе отсчета;

a – ускорение тела в инерциальной системе отсчета;

Fин – сила инерции.

2) силы, действующие на тело, покоящееся во вращающейся системе отсчета (рис. П 1.16):

,

где Fц – центробежная сила инерции;

 – угловая скорость вращающейся системы отсчета;

r – радиус-вектор тела относительно начала вращающейся системы отсчета;

R – перпендикулярная к оси вращения составляющая r.

3) силы, действующие на тело, движущееся во вращающейся системе отсчета (рис. П1.17):

Fк = 2m[v ω],

где Fк – сила Кориолиса;

v – скорость движения тела;

 – угловая скорость вращающейся системы отсчета.

Основной закон динамики для неинерциальных систем отсчета:

ma= F + Fин + Fц + Fк,

где F, Fин, Fц, Fк – ранее рассмотренные силы, действующие в неинерциальных системах отсчета.

Основная задача динамики вращательного движения – нахождение угловых ускорений, сообщаемых известными силами.

Момент инерции – скалярная физическая величина, характеризующая инертность тела при вращательном движении.

Момент инерции материальной точки относительно неподвижной оси вращения – физическая величина, равная произведению массы материальной точки на квадрат расстояния до оси или центра вращения (рис. П1.18):

I = mr2.

Момент инерции тела относительно оси z – физическая величина, равная сумме моментов инерции отдельных материальных точек тела относительно той же оси вращения (рис. П1.19):

; ,

где mi – масса i-й точки;

ri – расстояние i-й точки до оси z;

ρ – плотность вещества, из которого состоит тело;

V – объем тела.

Теорема Штейнера – момент инерции тела относительно произвольной оси z равен сумме момента инерции того же тела I0 относительно оси, параллельной данной и проходящей через центр масс, и произведения массы тела m на квадрат расстояния между осями (а):

Iz = I0 + mа2.

На рисунке П1.20 представлено применение теоремы Штейнера к расчету момента инерции диска относительно оси ОО', параллельной оси О1О1'.

Главные оси инерции – три взаимно перпендикулярных свободных оси вращения тела произвольной формы, проходящие через его центр масс.

Момент импульса материальной точки относительно неподвижной оси вращения (L) – векторная физическая величина, модуль которой равен произведению модуля импульса на плечо (рис. П1.21):

L= p.

В векторной форме

L= [rp] = [rmv],

где m – масса материальной точки;

v – скорость материальной точки;

 – плечо (кратчайшее расстояние от направления импульса до оси вращения).

Момент импульса системы относительно неподвижной оси вращения zпроекция на эту ось вектора L (момента импульса системы):

,

где ri, pi – радиус-вектор и импульс i-й материальной точки;

n – общее число точек в системе.

Связь момента импульса тела с вектором угловой скорости ω и моментом инерции

L = Iω.

Момент силы относительно центра вращения или неподвижной оси вращения – векторная физическая величина, модуль которой равен произведению модуля силы на плечо (рис. П1.22):

M=F,

где  – плечо силы – кратчайшее расстояние от линии действия силы до центра вращения.

В векторной форме

M=[rF].

Главный или результирующий момент сил относительно неподвижной оси вращения равен векторной сумме моментов слагаемых сил:

.

Моменты сил относительно осей, которые перпендикулярны и параллельны оси вращения, равны нулю.

Основной закон динамики вращательного движения твердых (недеформирующихся) тел, для которых I=const (второй закон динамики для вращательного движения):

M = I∙ε; .

Импульс вращающего момента – произведение вращающего момента на время его действия:

Mdt = dL.

Осциллятор – физическая система, совершающая колебания; система, у которой величины, описывающие ее, периодически меняются с течением времени.

Гармонический осциллятор – механическая система, совершающая колебания около положения устойчивого равновесия, описывающие величины которой изменяются по гармоническому закону (закону синуса или косинуса).

Уравнение движения гармонического осциллятора:

; ;,

где a = d2x/dt2 = –ω02x – ускорение материальной точки;

F – возвращающая сила, которая стремится вернуть систему в положение равновесия (F = –mω02x = –kx);

x – смещение;

k = mω02 – коэффициент возвращающей силы. Он численно равен возвращающей силе, вызывающей единичное смещение.

Решение уравнения движения гармонического осциллятора:

x = x0sin (ω0t + φ0).

Уравнение гармонических колебаний в комплексном виде:

.

В теории колебаний принимается, что величина x равна вещественной части комплексного выражения, стоящего в этом выражении справа.

Дифференциальное уравнение гармонического колебательного движения:

.

Решением дифференциального уравнения гармонических колебаний является выражение вида

x = x0 sin (0t + 0),

где k = m 02 – коэффициент возвращающей силы;

x – смещение материальной точки;

x0 – амплитуда колебаний;

0 = 2/Т = 2 – круговая (циклическая частота);

 = 1/T – частота колебаний;

T – период колебаний;

 = (0t + 0) – фаза колебаний;

0 – начальная фаза колебаний.

Примеры гармонических осцилляторов:

а) пружинный маятник – тело массой m (рис. П1.23), подвешенное на пружине, совершающее гармоническое колебание.

Упругие колебания совершаются под действием упругих сил:

F= –k∙,

где k = m o2 – коэффициент жесткости;

 – относительное удлинение.

Уравнение движения пружинного маятника:

; ,

где ;

 – величина деформации.

Решение уравнения движения пружинного маятника:

 = ()0sin (ω0t + φ0).

Круговая частота, частота и период колебаний пружинного маятника:

; ;;

б) физический маятник– твердое тело, совершающее гармоническое колебательное движение относительно оси, не совпадающей с центром масс (рис. П1.24).

Уравнение движения физического маятника:

.

Решение уравнения движения физического маятника:

 = 0sin (ω0t + α),

где α – начальная фаза колебаний.

Круговая частота, частота и период колебаний физического маятника:

; ;;,

где L = I/md – приведенная длина физического маятника – длина такого математического маятник, период колебаний которого равен периоду колебаний физического маятника;

I – момент инерции физического маятникa относительно оси колебаний;

m – масса физического маятника;

d – расстояние между осью колебаний и центром масс;

в) математический маятник – тело массой m, размерами которого можно пренебречь, подвешенное на невесомой, нерастяжимой нити (рис. П1.25).

Круговая частота, частота и период колебаний математического маятника:

; ;.

Приведенная длина физического маятника – величина, численно равная длине такого математического маятника, период колебаний которого равен периоду колебаний физического маятника:

.

Крутильные колебания – колебания, совершающиеся под действием закручивающего момента, пропорционального углу закручивания (колебания диска, подвешенного на стальной нити):

M= – D,

где – коэффициент крутильной жесткости;

G – модуль сдвига;

r – радиус нити;

 – длина нити.

Период колебаний крутильного маятника

,

где Iz – момент инерции тела относительно оси колебаний.

Затухающие (свободные) колебания – движения реальной колебательной системы, сопровождающиеся силами трения и сопротивления, которые приводят к уменьшению амплитуды колебаний (рис. П1.26). При этом энергия, потерянная системой, не восполняется за счет внешних сил.

Дифференциальное уравнение затухающих колебаний:

,

где r – коэффициент сопротивления.

Решение уравнения затухающих колебаний:

,

где А = x0 e– βt – амплитуда колебаний, убывающая по экспоненциальному закону;

β = r/(2m) – коэффициент затухания, характеризующий быстроту убывания амплитуды с течением времени;

–собственная частота колебаний системы, т.е. та частота, с которой совершались бы свободные колебания системы в отсутствии сопротивления среды (r = 0).

Круговая частота, частота и период затухающих колебаний:

; ; .

Характеристики затухающих колебаний:

1) декремент затухания – отношение двух смещений, отличающихся друг от друга по времени на период. Декремент затухания характеризует быстроту затухания в зависимости от числа колебаний:

;

2) логарифмический декремент затуханиявеличина, равная натуральному логарифму от декремента затухания. Логарифмический декремент затухания характеризует затухание колебаний за период:

 = lnD = ln(eβΤ) = βT.

Добротность колебательной системы

,

где Ne – число колебаний за то время, за которое амплитуда колебаний уменьшается в «е» раз.

Вынужденные колебания – колебания, совершаемые системами под действием внешней (вынуждающей) силы, изменяющейся по какому-либо закону, например гармоническому (рис. П1.27):

f = F0cos  t,

где F0 – амплитудное значение вынуждающей силы;

 – частота вынуждающей силы.

Дифференциальное уравнение вынужденных колебаний

,

где f = F0 sin t – вынуждающая сила;

 – частота вынуждающей силы.

Решение уравнения вынужденных колебаний:

X = X1 + X2 = x0etsin (ω't + φ0') + x0sin (ωt + φ),

где .

Амплитуда и начальная фаза вынужденных колебаний:

;

.

Резонанс – явление резкого возрастания амплитуды колебаний при некоторой определенной для данной колебательной системы частоте (резонансной частоте). На рисунке П1.28 показаны возможные кривые при резонансе.

Резонансная частота

.