
- •ВВЕДЕНИЕ
- •РАЗДЕЛ ПЕРВЫЙ. ОБОСНОВАНИЕ ПРОЕКТНЫХ РЕШЕНИЙ
- •ГЛАВА 1. КЛАССИФИКАЦИЯ И НОРМЫ ПРОЕКТИРОВАНИЯ АВТОМОБИЛЬНЫХ ДОРОГ
- •1.1 Классификация автомобильных дорог
- •1.2. Нормы проектирования автомобильных дорог
- •1.3. Расчетные скорости, нагрузки и габаритные размеры подвижного состава
- •1.4. Охрана окружающей среды
- •1.1. Общие стандарты
- •1.2. Грунты, земляное полотно, торф
- •1.3. Асфальтобетонные смеси, битум
- •1.3. Бетон, железобетон. Бетонные смеси, щебень, гравий, песок, цемент, шлаки, шламы и другие материалы
- •1.5. Автомобильные, железные дороги, аэродромы, земляное полотно дорог, мосты и трубы, укрепительные работы (изыскания, проектирование, строительство)
- •1.6. Основания и фундаменты
- •1.7. Изыскания автомобильных, железных дорог, аэродромов
- •1.8. Эксплуатация автомобильных дорог
- •1.9. Геотекстиль
- •1.10. Экология, климатология
- •1.11. Безопасность движения и техника безопасности
- •ГЛАВА 2. ОРГАНИЗАЦИЯ ПРОЕКТИРОВАНИЯ АВТОМОБИЛЬНЫХ ДОРОГ
- •2.1. Общие положения
- •2.2. Предпроектное проектирование
- •2.3. Разработка проектной документации
- •2.4. Разработка рабочих чертежей
- •2.5. Состав проектной документации
- •2.6. Оформление проектной документации
- •Приложение 2.1.
- •Приложение 2.2.
- •Перечень технических документов, подлежащих использованию при разработке обоснования инвестиций
- •Приложение 2.3.
- •Перечень материалов и документов, включаемых в состав обоснования инвестиций (ОИ).
- •Приложение 2.4.
- •Перечень материалов и документов, включаемых в состав обосновывающих материалов инженерного проекта (ИП).
- •ГЛАВА 3. СОВРЕМЕННАЯ ТЕХНОЛОГИЯ ИЗЫСКАНИЙ АВТОМОБИЛЬНЫХ ДОРОГ
- •3.1. Особенности традиционной технологии изысканий автомобильных дорог и ее анализ
- •3.2. Особенности технологии изысканий автомобильных дорог при проектировании на уровне САПР-АД
- •3.3. ГИС-технологии в изысканиях автомобильных дорог
- •3.4. Методы обоснования полосы варьирования конкурирующих вариантов трассы
- •3.5. Цифровое моделирование рельефа, ситуации и геологического строения местности
- •3.6. Виды цифровых моделей местности
- •3.7. Методы построения цифровых моделей местности
- •3.8. Математическое моделирование местности
- •3.9. Задачи, решаемые с использованием цифровых и математических моделей
- •ГЛАВА 4. ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ СТРОИТЕЛЬСТВА АВТОМОБИЛЬНЫХ ДОРОГ И МОСТОВЫХ ПЕРЕХОДОВ
- •4.1. Структура экономического обоснования дорожного строительства
- •4.2. Перспективный парк автомобилей
- •4.3. Прогнозирование перспективной интенсивности движения
- •4.4. Методы оценки общественной эффективности инвестиционных проектов дорожного строительства
- •4.5. Процедуры учета неопределенности
- •4.6. Элементы затрат-выгод инвестиционных проектов дорожного строительства
- •ГЛАВА 5. ТОПОГРАФО-ГЕОДЕЗИЧЕСКОЕ ОБОСНОВАНИЕ ПРОЕКТОВ
- •5.1. Геодезические опорные сети
- •5.2. Обозначение пунктов государственных геодезических сетей на местности
- •5.3. Привязка к пунктам государственных геодезических сетей
- •5.4. Планово-высотное обоснование топографических съемок
- •5.5. Электронная тахеометрическая съемка
- •5.7. Наземное лазерное сканирование
- •ГЛАВА 6. ИНЖЕНЕРНО-ГЕОЛОГИЧЕСКОЕ ОБОСНОВАНИЕ ПРОЕКТОВ
- •6.2. Современные технические средства, применяемые при инженерно-геологических изысканиях
- •6.3. Инженерно-геологические изыскания на полосе варьирования трассы
- •6.4. Инженерно-геологические изыскания по принятому варианту трассы
- •6.5. Разведка местных дорожно-строительных материалов
- •6.6. Лабораторные испытания и полевые методы исследования физико-механических свойств грунтов и материалов
- •6.7. Геофизические методы инженерно-геологических изысканий
- •6.8. Камеральная обработка и представляемые материалы
- •7.1. Состав инженерно-гидрометеорологического обоснования проектов
- •7.2. Технология инженерно-гидрометеорологических изысканий
- •7.3. Морфометрические работы
- •7.4. Гидрометрические работы
- •7.5. Аэрогидрометрические работы
- •РАЗДЕЛ ВТОРОЙ. ОСНОВНЫЕ ПРОЕКТНЫЕ РАБОТЫ
- •ГЛАВА 8. ОБОСНОВАНИЕ ТРЕБОВАНИЙ К ГЕОМЕТРИЧЕСКИМ ЭЛЕМЕНТАМ АВТОМОБИЛЬНЫХ ДОРОГ
- •8.1. Элементы плана автомобильных дорог
- •8.2. Элементы поперечных профилей
- •8.3. Элементы продольного профиля
- •8.4 Ширина проезжей части и земляного полотна
- •8.5. Остановочные, краевые полосы и бордюры
- •8.6. Поперечные уклоны элементов дороги
- •8.7. Нормы проектирования плана и продольного профиля
- •8.8. Переходные кривые
- •8.9. Виражи
- •8.10. Уширение проезжей части
- •8.11. Серпантины
- •8.12. Мосты и трубы
- •8.13. Тоннели
- •ГЛАВА 9. ПЛАН АВТОМОБИЛЬНЫХ ДОРОГ. ПРИНЦИПЫ ЛАНДШАФТНОГО ПРОЕКТИРОВАНИЯ
- •9.1. Выбор направления трассы
- •9.2. Элементы клотоидной трассы
- •9.3. Принципы трассирования
- •9.4. Цели и задачи ландшафтного проектирования*
- •9.5. Согласование элементов трассы с ландшафтом
- •9.6. Особенности трассирования автомобильных дорог в характерных ландшафтах
- •9.7. Согласование земляного полотна с ландшафтом
- •9.8. Правила обеспечения зрительной плавности и ясности трассы
- •ГЛАВА 10. ПРОЕКТИРОВАНИЕ ПРОДОЛЬНОГО ПРОФИЛЯ АВТОМОБИЛЬНЫХ ДОРОГ
- •10.1. Принципы проектирования продольного профиля
- •10.2. Критерии оптимальности
- •10.3. Комплекс технических ограничений
- •10.4. Техника проектирования продольного профиля в традиционном классе функций
- •ГЛАВА 11. ПРОЕКТИРОВАНИЕ ЗЕМЛЯНОГО ПОЛОТНА
- •11.1. Элементы земляного полотна и общие требования к нему
- •11.2. Грунты для сооружения земляного полотна
- •11.3. Природные условия, учитываемые при проектировании земляного полотна
- •11.4. Учет водно-теплового режима при проектировании верхней части земляного полотна
- •11.5. Поперечные профили земляного полотна в обычных условиях
- •11.6. Проектирование насыпей на слабых основаниях
- •11.7. Проверка устойчивости откосов при проектировании высоких насыпей и глубоких выемок
- •11.8. Земляное полотно на склонах
- •ГЛАВА 12. ПРОЕКТИРОВАНИЕ НЕЖЕСТКИХ ДОРОЖНЫХ ОДЕЖД
- •12.1. Общие сведения
- •12.2. Основы конструирования нежестких дорожных одежд
- •12.3. Расчеты нежестких дорожных одежд на прочность
- •12.4. Расчет конструкции дорожной одежды в целом по допускаемому упругому прогибу
- •12.5. Расчет по условию сдвигоустойчивости подстилающего грунта и малосвязных конструктивных слоев
- •12.6. Расчет конструкции дорожной одежды на сопротивление монолитных слоев усталостному разрушению от растяжения при изгибе
- •12.7. Обеспечение морозоустойчивости дорожной одежды
- •12.8. Осушение дорожной одежды и земляного полотна
- •ГЛАВА 13. КОНСТРУКЦИИ И ОСНОВНЫЕ ПОЛОЖЕНИЯ РАСЧЕТА ЖЕСТКИХ ДОРОЖНЫХ ОДЕЖД
- •13.1. Область применения. Основные виды покрытий
- •13.2. Общие требования к жестким дорожным одеждам. Основные принципы конструирования
- •13.3. Особенности конструкций жестких дорожных одежд
- •13.4. Основные положения расчета жестких дорожных одежд
- •Список литературы к главе 13
- •ГЛАВА 14. ОСОБЕННОСТИ РАСЧЕТА ЖЕСТКИХ ДОРОЖНЫХ ОДЕЖД
- •14.1. Напряжения в цементобетонном покрытии от внешней нагрузки
- •14.2. Определение разрушающей нагрузки для плит цементобетонного покрытия
- •14.3. Определение напряжений в цементобетонном покрытии по прогибам, измеренным в натуре
- •14.4. Определение эквивалентного модуля упругости и коэффициента поперечной деформации многослойного основания под жестким дорожным покрытием
- •14.5. Температурные напряжения
- •14.6. Устойчивость плит бетонных дорожных покрытий при повышении температуры
- •14.7. Прочность при усилении жестких покрытий слоем асфальтобетона или цементобетона
- •14.8. Устойчивость против выпирания асфальтобетонного слоя на цементобетонном основании
- •14.9. Устойчивость положения плиты со свободными краями при нагрузке от транспортных средств
- •Список литературы к главе 14
- •ГЛАВА 15. ПРОЕКТИРОВАНИЕ СИСТЕМЫ ПОВЕРХНОСТНОГО И ПОДЗЕМНОГО ДОРОЖНОГО ВОДООТВОДА
- •15.1. Система поверхностного и подземного дорожного водоотвода
- •15.2. Нормы допускаемых скоростей течения воды
- •15.3. Определение объемов и расходов ливневых и талых вод с малых водосборов
- •15.4. Гидравлический расчет дорожных канав
- •15.5. Гидравлический расчет отверстий малых мостов и труб
- •15.6. Косогорные сооружения поверхностного водоотвода
- •15.7. Укрепление русел за сооружениями
- •15.8. Расчет дренажа
- •15.9. Некоторые рекомендации к разработке региональных норм стока
- •ГЛАВА 16. ПРОЕКТИРОВАНИЕ МОСТОВЫХ ПЕРЕХОДОВ
- •16.1. Основные сведения о проектировании переходов через большие водотоки
- •16.2. Гидрологические расчеты
- •16.3. Морфометрические расчеты
- •16.4. Прогноз природных деформаций русел рек
- •16.5. Расчет срезок пойменных берегов подмостовых русел и отверстий мостов
- •16.6. Расчет общего размыва
- •16.7. Определение максимальной глубины расчетного общего размыва
- •16.8. Расчет местного размыва у опор мостов
- •16.9. Расчет размывов переходов коммуникаций у мостовых переходов
- •16.10. Расчет характерных подпоров на мостовых переходах
- •ГЛАВА 17. ПРОЕКТИРОВАНИЕ ПОДХОДОВ, РЕГУЛЯЦИОННЫХ И УКРЕПИТЕЛЬНЫХ СООРУЖЕНИЙ
- •17.1. Условия работы пойменных насыпей
- •17.2. Проектирование подходов к мостам
- •17.3. Проектирование оптимальных пойменных насыпей
- •17.4. Расчет устойчивости откосов подтопляемых насыпей
- •17.5. Расчет осадок пойменных насыпей
- •17.6. Расчет скорости осадки насыпей на слабых основаниях
- •17.7. Задачи и принципы регулирования рек у мостовых переходов
- •17.8. Конструкции регуляционных сооружений на мостовых переходах
- •ГЛАВА 18. ПЕРЕСЕЧЕНИЯ И ПРИМЫКАНИЯ АВТОМОБИЛЬНЫХ ДОРОГ
- •18.1. Общие положения и требования по проектированию пересечений и примыканий в одном уровне
- •18.2. Классификация пересечений автомобильных дорог в разных уровнях и требования к ним
- •18.3. Элементы пересечений автомобильных дорог в разных уровнях
- •18.4. Задачи, решаемые при проектировании развязок движения в разных уровнях
- •18.5. Анализ условий пересечений при проектировании развязок
- •18.6. Пропускная способность развязок в разных уровнях и оценка безопасности движения
- •18.7. Технико-экономическое сравнение вариантов развязок движения
- •ГЛАВА 19. ОСОБЕННОСТИ ИЗЫСКАНИЙ И ПРОЕКТИРОВАНИЯ ДОРОГ НА МНОГОЛЕТНЕМЕРЗЛЫХ (ВЕЧНОМЕРЗЛЫХ) ГРУНТАХ
- •19.1. Распространение вечной мерзлоты на территории Российской Федерации
- •19.2. Дорожно-климатическое районирование первой зоны - зоны вечной мерзлоты России
- •19.3. Принципы проектирования и строительства дорог на многолетнемерзлых грунтах
- •19.4. Особенности водно-теплового режима естественных грунтов и земляного полотна автомобильных дорог в районах вечной мерзлоты
- •19.5. Особенности расчета дорожных конструкций нежесткого типа в условиях вечной мерзлоты
- •19.6. Особенности изысканий для строительства дорог на многолетнемерзлых грунтах
- •19.7. Особенности проектирования дорог на многолетнемерзлых грунтах
- •19.8. Земляное полотно автомобильных дорог на многолетнемерзлых грунтах
- •19.9. Требования к грунтам земляного полотна на многолетнемерзлых грунтах
- •19.10. Конструкции земляного полотна автомобильных дорог на многолетнемерзлых грунтах
- •19.11. Водоотводные сооружения
- •19.12. Проектирование земляного полотна и искусственных сооружений на наледных участках
- •ГЛАВА 20. ИНЖЕНЕРНОЕ ОБУСТРОЙСТВО АВТОМОБИЛЬНЫХ ДОРОГ
- •20.1. Обслуживание дорожного движения
- •20.2. Дорожные знаки
- •20.3. Дорожная разметка
- •20.4. Направляющие устройства
- •20.5. Дорожные ограждения
- •20.6. Освещение автомобильных дорог
- •20.7. Составление схемы обстановки дороги
- •ГЛАВА 21. ПРОЕКТИРОВАНИЕ РЕКОНСТРУКЦИИ АВТОМОБИЛЬНЫХ ДОРОГ
- •21.1. Особенности реконструкции автомобильных дорог
- •21.2. Особенности изысканий для разработки проектов реконструкции автомобильных дорог
- •21.3. Реконструкция автомобильных дорог в плане и продольном профиле
- •21.4. Земляное полотно при реконструкции автомобильных дорог
- •21.5. Дорожные одежды при реконструкции автомобильных дорог
- •21.6. Особенности организации работ при реконструкции автомобильных дорог
- •ГЛАВА 22. ПРОЕКТИРОВАНИЕ ОРГАНИЗАЦИИ СТРОИТЕЛЬСТВА
- •22.1. Цели и задачи проекта организации строительства
- •22.2. Строительный генеральный план
- •22.3. Календарный план строительства
- •22.4. Механизация дорожного строительства
- •22.5. Машины для земляных работ
- •22.6. Машины для уплотнения грунтов и материалов дорожных одежд
- •22.7. Определение потребности в основных строительных машинах, транспортных средствах и трудовых ресурсах
- •ГЛАВА 23. ОЦЕНКА ПРОЕКТНЫХ РЕШЕНИЙ ПРИ ПРОЕКТИРОВАНИИ АВТОМОБИЛЬНЫХ ДОРОГ
- •23.1. Система показателей для оценки проектных решений
- •23.2. Определение предельной пропускной способности дороги и коэффициента загрузки движением
- •23.3. Расчет средней скорости движения транспортного потока
- •23.4. Расчет максимальной скорости движения одиночного автомобиля
- •23.5. Определение степени загрязнения придорожной полосы соединениями свинца
- •23.6. Расчет загрязнения атмосферного воздуха выбросами автомобильного транспорта
- •ГЛАВА 24. ОЦЕНКА БЕЗОПАСНОСТИ ДВИЖЕНИЯ ПРИ ПРОЕКТИРОВАНИИ ДОРОГ И ИХ РЕКОНСТРУКЦИИ
- •24.1. Влияние дорожных условий на безопасность движения
- •24.2. Оценка относительной опасности участков дороги и выявление опасных мест методом «коэффициентов относительной аварийности»
- •24.3. Выявление опасных мест метолом «коэффициентов безопасности»
- •24.4. Оценка обеспеченности безопасности движения на пересечениях в одном уровне
- •24.5. Оценка безопасности движения на пересечениях в разных уровнях
- •РАЗДЕЛ ТРЕТИЙ. АВТОМАТИЗИРОВАННОЕ ПРОЕКТИРОВАНИЕ АВТОМОБИЛЬНЫХ ДОРОГ
- •ГЛАВА 25. ПРИНЦИПИАЛЬНЫЕ ОСНОВЫ АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ АВТОМОБИЛЬНЫХ ДОРОГ И СООРУЖЕНИЙ НА НИХ
- •25.1. Понятие о системах автоматизированного проектирования
- •25.2. Средства обеспечения систем автоматизированного проектирования
- •25.3. Функциональная структура САПР
- •25.4. Принципы оптимизации и моделирования при проектировании автомобильных дорог
- •25.5. Гис-технологии в автоматизированном проектировании
- •Список литературы к главе 25
- •ГЛАВА 26. СИСТЕМА АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ CAD «CREDO»
- •26.1. Историческая справка
- •26.2. Функциональная структура подсистемы «Линейные изыскания»
- •26.3. Функциональная структура подсистемы «Дороги»
- •ГЛАВА 27. СИСТЕМА АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ «indorcad/road»
- •27.1. Историческая справка
- •27.3. Раздел «Продольный профиль»
- •27.4. Раздел «Верх земляного полотна»
- •27.5. Раздел «Поперечный профиль»
- •27.6. Графический редактор «IndorDrawing»
- •ГЛАВА 28. АВТОМАТИЗИРОВАННОЕ ПРОЕКТИРОВАНИЕ ПЛАНА АВТОМОБИЛЬНЫХ ДОРОГ
- •28.1. Автоматизированное проектирование плана и продольного профиля. Общий методологический подход
- •28.2. Методы «однозначно определенной оси»
- •28.3. Метод «опорных элементов»
- •28.4. Метод «сглаживания эскизной линии трассы»
- •28.5. Методы «свободной геометрии». Сплайн-трассирование
- •ГЛАВА 29. АВТОМАТИЗИРОВАННОЕ ПРОЕКТИРОВАНИЕ ПРОДОЛЬНОГО ПРОФИЛЯ АВТОМОБИЛЬНЫХ ДОРОГ
- •29.1. Метод «опорных точек»
- •29.2. Метод «проекции градиента»
- •29.3. Метод «граничных итераций»
- •29.4. Методы «свободной геометрии»
- •ГЛАВА 30. АВТОМАТИЗИРОВАННОЕ ПРОЕКТИРОВАНИЕ ОПТИМАЛЬНЫХ НЕЖЕСТКИХ ДОРОЖНЫХ ОДЕЖД
- •30.1. Особенности автоматизированного проектирования оптимальных нежестких дорожных одежд
- •30.2. Оптимизационный метод проектирования дорожных одежд нежесткого типа
- •30.3. Технология автоматизированного проектирования оптимальных дорожных одежд
- •ГЛАВА 31. АВТОМАТИЗИРОВАННОЕ ПРОЕКТИРОВАНИЕ СИСТЕМЫ ПОВЕРХНОСТНОГО ВОДООТВОДА АВТОМОБИЛЬНЫХ ДОРОГ
- •31.1. Математическое моделирование стока ливневых вод с малых водосборов
- •31.2. Математическое моделирование стока талых вод с малых водосборов
- •31.3. Расчет отверстий и моделирование работы малых мостов и труб
- •31.4. Проектирование оптимальных водопропускных труб
- •31.5. Проектирование оптимальной системы поверхностного водоотвода
- •ГЛАВА 32. КОМПЛЕКСНАЯ МЕТОДОЛОГИЯ АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ МОСТОВЫХ ПЕРЕХОДОВ
- •32.1. Принципы автоматизированного проектирования мостовых переходов
- •32.2. Аналитическая аппроксимация и универсальный метод определения расчетных гидрометеорологических характеристик
- •32.3 Комплексная программа расчета отверстий мостов «Рома»
- •32.4. Исходная информация и результаты расчета по программе «Рома»
- •32.5. Программа расчета уширений русел на мостовых переходах «Рур»
- •32.6. Исходная информация и результаты расчета по программе «Рур»
- •ГЛАВА 33. МЕТОДЫ РАСЧЕТА СОЕДИНИТЕЛЬНЫХ РАМП
- •33.1. Существующие принципы конструктивного решения участков ответвлений и примыканий соединительных рамп
- •33.2. Переходные кривые, требования к ним и методы их расчета
- •33.3. Расчет элементов соединительных рамп
- •33.4. Проектирование продольного профиля по соединительным рампам
- •33.5. Планово-высотное решение соединительных рамп
- •ГЛАВА 34. ОЦЕНКА ПРОЕКТНЫХ РЕШЕНИЙ ПРИ АВТОМАТИЗИРОВАННОМ ПРОЕКТИРОВАНИИ АВТОМОБИЛЬНЫХ ДОРОГ
- •34.1. Программы для оценки проектных решений
- •34.2. Построение перспективных изображений автомобильных дорог
- •34.3. Перцептивные изображения автомобильных дорог
- •34.4. Оценка зрительной плавности трассы
- •34.5. Определение показателей транспортно-эксплуатационных качеств автомобильных дорог
- •34.6. Оценка проектных решений автомобильных дорог на основе математического моделирования
- •34.7. Технико-экономическое сравнение вариантов автомобильных дорог и мостовых переходов

База нормативной документации: www.complexdoc.ru
Примыкания автомобильных дорог в разных уровнях различают полные (см. рис. 18.9, а, б, в), обеспечивающие развязку движения по всем направлениям, и неполные, имеющие зоны пересечения транспортных потоков в одном уровне (см. рис. 18.9, г, д) или зоны переплетения (рис. 18.9, е). В практике отечественного проектирования автомобильных дорог наибольшее распространение получили примыкания в разных уровнях типа «труба» (см. рис. 18.9, а, б). Этот тип примыкания обеспечивает развязку движения во всех направлениях при отчуждении сравнительно небольшой площади земель и невысокой строительной стоимости. Однако примыкание типа «труба» имеет существенный недостаток - не обеспечивает возможность разворота.
18.3. Элементы пересечений автомобильных дорог в разных уровнях
Любое пересечение автомобильных дорог сколь угодно сложного очертания в плане может быть представлено сочетанием весьма ограниченного числа геометрических элементов (рис. 18.10), классификация которых предложена В.А. Федотовым.
Рис. 18.10. Геометрические элементы пересечений автомобильных дорог в разных уровнях:
ПСП - переходно-скоростная полоса; ПКпереходная кривая; КЛ - клотоида; КК - круговая кривая; П- прямая
835

База нормативной документации: www.complexdoc.ru
Переходно-скоростная полоса (ПСП). Элементы пересечений рассчитывают на меньшие скорости движения автомобилей (см. разд. 18.1), чем на пересекающихся дорогах. Для осуществления безопасного въезда автомобилей на пересечение, а также для выезда с пересечения на дорогу устраивают дополнительную полосу, называемую переходно-скоростной, на длине которой осуществляется торможение автомобилей до безопасной скорости въезда на пересечение либо ускорение автомобилей до скорости транспортного потока на дороге. Длину переходноскоростных полос определяют из условия торможения (или разгона) от скорости V1 на автомагистрали до скорости V2 входа на пересечение:
где
V1, V2 - скорости на автомагистрали и на входе на пересечение соответственно, км/ч;
а - ускорение автомобилей, принимаемое в пределах 0,8 - 1,2 м/с2 при разгоне и 1,75 - 2,5 м/с2 при торможении.
Согласно действующим Строительным нормам и правилам длину переходноскоростных полос полной ширины (при 0-м продольном уклоне) принимают:
на дорогах I и II категорий для разгона - 180 м; для торможения - 100 м; отгон уширения - 80 м;
на дорогах III и IV категорий для разгона - 130 м; для торможения - 75 м; отгон уширения - 60 м.
Переходная кривая (ПК). Для обеспечения плавного перехода автомобиля от прямого участка переходно-скоростной полосы (R = ¥) к участку соединительной рампы с максимальной кривизной (R = Rк) и, наоборот, из условия постепенного изменения центробежного ускорения применяют переходные кривые. В отличие от закруглений перегонных участков автомагистралей, где в качестве переходных кривых, как правило, используют клотоиду, характеризуемую линейным законом изменения кривизны и нарастания центробежного ускорения и отвечающую условиям движения по ней автомобилей с постоянной (расчетной) скоростью, на участках ответвлений и примыканий развязок движения в разных уровнях применяют особые типы переходных кривых, законы изменения кривизны которых наилучшим образом отвечают условиям движения автомобилей с переменной скоростью. Эти типы переходных кривых будут подробно рассмотрены в следующей главе.
836

База нормативной документации: www.complexdoc.ru
Клотоида (КЛ) также находит применение при проектировании соединительных рамп транспортных развязок, главным образом, правоповоротных и директивнонаправленных.
Круговая кривая (КК). Участки соединительных рамп с максимальной кривизной описывают в плане по круговым кривым. При этом автомобили в пределах этих участков движутся с минимальной постоянной скоростью.
Прямая (П). Как и при проектировании плана автомагистралей, при трассировании правоповоротных и директивно-направленных соединительных рамп прямую также нередко используют как самостоятельный элемент трассы. При этом прямая сопрягается со смежными круговыми кривыми обычно посредством клотоид.
Наиболее сложными и ответственными местами развязок движения в разных уровнях являются зоны ответвлений и примыканий право и левоповоротных соединительных рамп между пересекающимися автомагистралями (рис. 18.11). Конструктивные решения участков ответвлений и примыканий во многом определяют безопасность движения, пропускную способность и генеральные размеры всей развязки в целом.
Рис. 18.11. Элементы пересечений на ответвлениях и примыканиях: ЗТР - зона транспортной развязки; ЗО - зона ответвления; УО - участок ответвления; ЗП - зона примыкания; УП - участок примыкания; РП -
разделительная полоса; ОУ - отгон уширения; Р - участок разделения кромок и бровок
Зона транспортной развязки (ЗТР) определяется положением створов начала отгона уширения.
837

База нормативной документации: www.complexdoc.ru
Зона ответвления (ЗО) - участок на съезде с автомагистрали от створа начала отгона уширения переходно-скоростной полосы до створа конца разделения кромок проезжих частей.
Зона примыкания (ЗП) - участок на въезде на автомагистраль от створа конца разделения кромок до створа начала отгона уширения переходно-скоростной полосы.
Участок ответвления (УО) - участок на съезде с автомагистрали от створа начала отгона уширения переходно-скоростной полосы до створа начала разделения кромок.
Участок примыкания (УП) - участок на въезде на автомагистраль от створа начала разделения кромок до створа начала отгона уширения переходноскоростной полосы.
Отгон уширения (ОУ) - участок перехода от неуширенной проезжей части автомагистрали до начала переходно-скоростной полосы полной ширины.
Участок разделения кромок и бровок (Р) - участки съездов и въездов, в пределах которых осуществляется разделение кромок и бровок автомагистрали и соединительной рампы.
Планировочные решения развязок движения в разных уровнях включают определенный набор соединительных рамп между пересекающимися автомобильными дорогами. По В.А. Федотову, в зависимости от вида осуществляемых маневров и характера очертания в плане различают следующие виды соединительных рамп (рис. 18.12):
для движения при смене направлений направо - правоповоротные рампы (ППР);
для движения при смене направлений налево - Петлеобразные рампы (ПЕР), правосторонние рампы (ПСР), левосторонние рампы (ЛСР), право-левосторонние рампы (ПЛСР), лево-правосторонние рампы (ЛПСР), кольцевые рампы (КР).
Использование перечисленных типов соединительных рамп дает возможность построения практически любой развязки. Например, применение четырех рамп типа ППР и четырех рамп типа ПЕР приводит к классической схеме «клеверного листа» и т.д.
18.4. Задачи, решаемые при проектировании развязок движения в разных уровнях
Несмотря на известную общность задач, решаемых при проектировании развязок движения в разных уровнях и автомобильных дорог, проектирование
838

База нормативной документации: www.complexdoc.ru
развязок имеет ряд специфических особенностей. Так, например, если автомобильная дорога является линейным сооружением, то развязки движения размещаются на площадях, размеры которых могут достигать 50 га и более. Многообразие схем развязок, вариантный выбор планировочных и конструктивных решений с учетом местных условий и пространственной геометрии пересекающихся дорог при наличии комплекса ограничений в элементах плана и продольного профиля приводят к решению задач, не свойственных для автомобильной дороги как таковой.
Рис. 18.12. Соединительные рампы сложных транспортных развязок
В последние годы получили большое развитее как в России, так и за рубежом технология и методы автоматизированного проектирования развязок движения в разных уровнях. Этому обстоятельству во многом способствовало, с одной стороны, внедрение вычислительной техники в практику проектирования и, с другой, изучение режимов движения автомобилей на существующих транспортных развязках, позволяющее устанавливать особенности функционирования сложных участков развязок и делать выводы в части необходимости изменения тех или иных параметров и даже принципов решения отдельных задач.
Несмотря на многочисленные выполненные за истекшие полстолетия исследования вопросов повышения надежности функционирования элементов развязок, инженерные расчеты при сложившейся традиционной технологии проектирования выполняют обособленно, без пространственной взаимоувязки элементов и контроля за проявлением физических показателей движения, во многом определяющих уровни удобства и безопасности движения и пропускную способность пересечений и примыканий. Общая картина развязок движения в
839

База нормативной документации: www.complexdoc.ru
разных уровнях в их пространственном воплощении намного сложнее схематизированных представлений элементов в отдельных плоскостях. Математическое описание взаимодействия геометрии соединительных рамп с сопрягаемыми участками пересекающихся автомагистралей в трехмерном пространстве с одновременным контролем за изменением физических параметров движения (продольные скорости движения и ускорения, степень изменения центробежного ускорения с постоянной и переменной скоростью, изменение угловой скорости поворота автомобиля вокруг продольной оси при движении на вираже и т.д.) приводит к комплексному проектированию, практическая реализация которого возможна лишь при использовании современной компьютерной техники.
Проектирование развязок движения в разных уровнях представляет собой чрезвычайно многодельный процесс (разработка одного проекта пересечения занимает до 5 месяцев), что в рамках традиционной технологии практически исключает вариантный поиск оптимального решения. В связи с этим использование компьютерной техники в расчетах целесообразно на всех стадиях проектирования. Применение компьютеров при проектировании развязок движения в разных уровнях обеспечивает экономический эффект, который выражается в следующем:
снижение сроков, трудоемкости и стоимости проектирования. Использование современных компьютеров, оснащенных быстродействующими и высокоточными графопостроителями планшетного типа и мониторами, позволяет автоматизировать трудоемкие процессы расчета элементов транспортных развязок при решении их в комплексной постановке, подсчет объемов работ, транспортно-эксплуатационных расходов, а также расчеты, выполняемые при технико-экономическом сравнении вариантов планировочных и конструктивных решений, автоматизировать процесс получения проектно-сметной документации в виде готовых чертежей, таблиц, смет и т.д.;
снижении сметной стоимости строительства развязок движения в разных уровнях до 10 % и более. Развязки в разных уровнях весьма дорогостоящие сооружения, и вопрос возможного снижения их строительной стоимости является весьма актуальным. Возможность проработки при автоматизированном проектировании в сжатые сроки большого числа вариантов планировочных и конструктивных решений позволяет выбрать лучший из них в отношении капиталоемкости строительства;
повышении качества проектных решений. Анализ в режиме диалога с компьютером вариантов решения развязок движения позволяет выбирать решения, обеспечивающие необходимую пропускную способность пересечения, наилучшие уровни удобства и безопасности движения, минимальные транспортноэксплуатационные затраты и т.д.;
840

База нормативной документации: www.complexdoc.ru
исключении ошибок при проектировании. В ходе эскизной проработки развязок движения в разных уровнях на ранних стадиях проектирования в случае использования традиционной технологии (без пространственной взаимоувязки элементов и контроля физических параметров движения) нередко допускаются грубые просчеты, требующие на последующих стадиях детального проектирования вынужденного изменения принципиальных решений планировки пересечения и не предусмотренного ранее увеличения сметной стоимости строительства.
Применение компьютерной техники для решения транспортных развязок движения в разных уровнях не может идти по пути формального заимствования методов традиционной технологии. Прежде всего, это относится: к сопряжению элементов в плане и продольном профиле; к использованию различных типов переходных кривых; к представлению рельефа й геологического строения местности в виде цифровых и математических моделей; к расчету кромок проезжей части, параллельных и непараллельных оси и уширений; к установлению пространственного положения элементов сооружения и т.д. Все расчеты в комплексной постановке должны быть взаимосвязаны.
Вопросы комплексного, автоматизированного проектирования развязок движения в разных уровнях получили в последние годы развитие в работах Союздорпроекта (канд. техн. наук В.А. Федотов), в которых, в частности, обобщен
ив значительной степени развит зарубежный опыт проектирования, строительства
иэксплуатации развязок. В отечественных системах автоматизированного проектирования автомобильных дорог САПР-АД этому важному вопросу посвящены специальные системы и пакеты прикладных программ. Технологическая схема комплексного пространственного проектирования развязок движения на пересечениях и примыканиях автомобильных дорог в разных уровнях с применением компьютерной техники представлена на рис. 18.13.
841

База нормативной документации: www.complexdoc.ru
Рис. 18.13. Технологическая схема комплексного автоматизированного проектирования развязок движения на пересечениях автомобильных дорог в разных уровнях
В соответствии с технологической последовательностью комплексного проектирования пересечений и примыканий автомобильных дорог в разных уровнях последовательно или одновременно решаются следующие основные группы задач:
сопряжение геометрических элементов плана в осях и кромках проезжих частей;
842