- •1.Классификация хроматографический методов.
- •2.История развития жидкостной хроматографии.
- •8.Принципиальная схема газового хроматографа.
- •11.Подвижная фаза газовой хроматографии. Характеристика газов-носителей.
- •12.Подразделение хроматоргафических колонок в соответствии с их назначением.
- •22.Афинная хроматография. Применение в пищевой промышленности.
- •23.Количетвенный метод определения содержания белка на полуавтоматическом приборе Кьельтек.
- •24.Метод Дюма для определения азота в органических соединениях. Анализатор белкового азота Rapid-Cube.
- •25.Экспресс-методы определения антибиотиков и микроорганизмов в продуктах животного происхождения.
- •30.Потенциометрическое титрование. Титрование по Карлу Фишеру.
- •Преимущества анализа
- •31.Потенциометрический метод определения хлоридов в мясе и мясных продуктах.
- •32.Определение содержания массовой доли жира в молокосодержащих продуктах методом Вейбулла-Бернтропа.
- •7.1 Подготовка продуктов для анализа
- •7.2 Подготовка колбы для экстрагирования
- •7.3 Подготовка реактивов
- •7.4 Подготовка вспомогательных материалов
- •8 Условия проведения измерений
- •9 Проведение измерений
- •10 Обработка результатов измерений
- •20.Ионообменная жидкостная хроматография (иох) низкого давления.
- •21. Как работать с иох колонной?
- •4.Сорбенты для вэжх.
- •5.Аппаратура для вэжх.
- •6.Отечественные жидкостные хроматографы.
- •7.Области применения вэжх.
- •10.Основные задачи, решаемые с помощью хроматографических методов.
- •13.Требования, предъявляемые к введению пробы в газовой хроматографии
- •14. Движение по колонке хроматографируемого вещества под действием потока газа-носителя.
- •15. Хроматографическое разделение трех-компонентной смеси при помощи газовой хроматоргафии.
- •16.Sds электрофорез в пааг как метод разделения биологических макромолекул.
- •18. Основные методы косвенного определения антиоксидантной активности.
- •19. Определение антиоксидантной активности на приборе Цвет-Яуза аа-01. Методы определение степени окисления липидов.
- •29. Иммуноферментный анализ. Гомогенный и гетерогенный ифа. Применение в пищевой промышленности.
15. Хроматографическое разделение трех-компонентной смеси при помощи газовой хроматоргафии.
16.Sds электрофорез в пааг как метод разделения биологических макромолекул.
метод молекулярной биологии и биохимии, используемый для разделения белковинуклеиновых кислот, основанный на движении заряженных биологических макромолекул впостоянном электрическом поле. Разделение в полиакриламидном геле происходит за счёт различийзарядаразделяемых молекул и отличиймолекулярных масс, а также от конфигурации молекул. Разделяют т. н. неденатурирующий, или нативный ПААГ-электрофорез (при котором разделяемые биологические макромолекулы в процессе электрофореза остаются в нативном состоянии) и денатурирующий ПААГ-электрофорез (при котором пробы предварительноденатурируют, в случае нуклеиновых кислот используют непродолжительное нагревание пробы сформамидомлибоглиоксалем, для денатурации белков обычно используют кипячение пробы в буфере, содержащем сильный ионный детергент (обычнододецилсульфат натрия) и агент, разрушающий четвертичную структуру белка за счёт разрушениядисульфидных мостиковмеждуглобуламибелка и внутри полипептидной цепи —бета-меркаптоэтанолом). В процессе денатурирующего ПААГ-электрофореза молекулы сохраняются в денатурированном состоянии за счёт наличия в геле хаотропных агентов (обычномочевины) в случае ПААГ-электрофореза нуклеиновых кислот и белков и наличия ионных (например додецилсульфата натрия,цетилтриметиламмоний бромида) и неионных (напримерtween-20) детергентов.SDS-PAGE по ЛэммлиДля проведения денатуририрующего электрофореза в ПААГ используют гель, состоящий из двух частей. Концентрирующий гель имеет pH 6,5 и концентрацию полиакриламида около 4 %. Разделяющий гель имеет рН в районе 8,5-9 и концентрацию полиакриламида 10-20 %. Все буферы не содержат неорганических солей, основным переносчиком тока в них является глицин. При рН 6,5 суммарный заряд молекулы глицина близок к нулю. Вследствие этого для переноса определенного заряда (который определяется силой тока в электрофоретической ячейке), отрицательно заряженные комплексы полипептидов с SDS должны двигаться с большой скоростью. При рН 8,8 глицин приобретает отрицательный заряд, вследствие чего на границе концентрирующего и разделяющего гелей белки резко тормозятся (в переносе одинакового заряда через единицу площади теперь участвует гораздо больше заряженных молекул, следовательно, они двигаются с меньшей скоростью). Результатом этого является концентрирование белков на границе гелей, что очень сильно повышает разрешающую способность метода.В разделяющем геле белки мигрируют в зависимости от длины полипептидной цепи, то есть пропорционально молекулярной массе.При использовании описываемого метода исходят из следующих допущений:-белки после обработки SDS находятся в полностью денатурированном состоянии;-количество молекул SDS, связанных с полипептидом, пропорционально его длине, и, следовательно, молекулярной массе;-собственный заряд полипептида несущественен в сравнении с зарядом связанного с ним SDS.
