
- •Предисловие.
- •Постоянный ток.
- •1.1 Простейшая цепь постоянного тока
- •1.2 Баланс мощностей в простейшей цепи постоянного тока.
- •1.3. Последовательное соединение сопротивлений.
- •1.4. Параллельное соединения сопротивлений.
- •1.5. Смешанное соединение сопротивлений.
- •1.6. Холостой ход и короткое замыкание тока.
- •1.7. Расчет сложных электрических цепей постоянного тока.
- •1.7.1. Метод непосредственного применения законов Кирхгофа
- •1.7.2. Метод контурных токов.
- •2.Однофазный переменный ток
- •2.1. Получение однофазного переменного тока.
- •2.2. Цепь переменного тока с активным сопротивлением
- •2.3 Цепь переменного тока с индуктивным сопротивлением.
- •2.4. Цепь переменного тока с ёмкостным сопротивлением.
- •2.5. Цепь переменного тока с последовательным соединением активного, индуктивного и ёмкостного сопротивлений (последовательная r-l-c цепь).
- •2.6. Резонанс напряжений
- •2.7. Цепь переменного тока с параллельным соединением активного, индуктивного и ёмкостного сопротивлений (параллельная r-l-c цепь).
- •2.8. Понятие эквивалентной проводимости.
- •2.9. Резонанс токов.
- •3. Трехфазный переменный ток.
- •3.1. Трехфазный ток и его получение
- •3.2. Соединение звездой. Четырехпроводная система трехфазного тока
- •3.3 Соединение звездой. Трехпроводная система трехфазного тока.
- •3.4. Соединение по схеме «треугольник».
- •3.5. Мощность трехфазной системы
- •3.6. Измерения мощности потребляемой трехфазными электроприемниками.
- •4. Трансформаторы.
- •4.1. Назначение, области применения и классификация трансформаторов
- •4.2. Устройство и принцип работы однофазного двухобмоточного трансформатора.
- •4.3. Холостой ход трансформатора.
- •4.4. Схема замещения трансформатора в режиме холостого хода.
- •4.5. Приведение вторичной обмотки трансформатора
- •4.6. Схема замещения трансформатора в рабочем режиме.
- •4.7. Векторная диаграмма рабочего режима трансформатора.
- •4.8. Коэффициент полезного действия трансформатора.
- •4.9. Экспериментальное определение параметров трансформаторов
- •4.9.1. Опыт холостого хода.
- •4.9.2.. Опыт короткого замыкания.
- •4.10 Нагрузочные характеристики трансформатора.
- •4.13. Нагрузочные характеристики трансформатора.
- •5. Асинхронные электродвигатели
- •5.1. Принцип действия и области применения асинхронных двигателей
- •5.2. Получение вращающегося магнитного поля
- •5.3. Конструкция асинхронных двигателей
- •5.4. Скольжение
- •5.5. Магнитные потоки и эдс асинхронного двигателя
- •5.6. Основные уравнения асинхронного двигателя
- •5.7. Приведение параметров обмотки ротора к обмотке статора
- •5.8. Векторная диаграмма асинхронного двигателя
- •5.9. Схема замещения асинхронного двигателя
- •5.10. Потери мощности и кпд асинхронного двигателя
- •5.11. Уравнение вращающего момента
- •5.12. Механические характеристики асинхронного двигателя
- •5.13. Рабочие характеристики асинхронного двигателя
- •5.14. Пуск, регулирование частоты вращения и торможение асинхронного двигателя
- •6. Электродвигатели постоянного тока
- •6.1. Назначение, устройство и способы возбуждения двигателей постоянного тока
- •6.2. Принцип действия двигателя постоянного тока и его основные уравнения
- •6.3. Пуск и реверсирование двигателя постоянного тока
- •6.4. Регулирование скорости вращения двигателя
- •6.5. Коэффициент полезного действия двигателя
- •6.6. Основные характеристики двигателя постоянного тока
1.6. Холостой ход и короткое замыкание тока.
Рис. 1.8. Режим
холостого хода
В режиме холостого хода внешняя цепь разомкнута (рис. 1.8.) При этом ее сопротивление равно бесконечности, а величина тока в цепи равна нулю. Следовательно, напряжение на зажимах генератора: Uxx= E.
Короткое замыкание возникает обычно в результате повреждения изоляции соединительных проводов. При этом зажимы генератора оказываются замкнуты проводником с ничтожно малым сопротивлением (рис. 1.9).
Рис. 1.9 Режим короткого замыкания.
Практически
напряжение на зажимах генератора в
режиме короткого замыкания равно нулю,
и сопротивление цепи равно внутреннему
сопротивлению генератора R0.
Так как R0
обычно мало, величина тока короткого
замыкания Iкз=
оказывается очень большой.
Короткое замыкание является аварийным режимом работы и представляет собой большую опасность для электрических установок, т.к. может повлечь за собой их разрушение, вследствие перегрева, вызванного большими токами.
1.7. Расчет сложных электрических цепей постоянного тока.
Приведем основные понятия сложной цепи. Несколько последовательно соединенных элементов цепи, по которым проходит один и тот же ток, образуют ветвь. В общем случае ветвь может содержать как сопротивления, так и ЭДС.
Точка соединения трех и более ветвей называют узловой точкой или узлом.
Несколько ветвей, образующих замкнутую электрическую цепь называют контуром.
1.7.1. Метод непосредственного применения законов Кирхгофа
Универсальным методом расчета токов в сложных цепях постоянного тока с несколькими источниками электрической энергии, является метод непосредственного применения I и II законов Кирхгофа.
К узловым точкам схемы применяется I закон Кирхгофа, согласно которому сумма токов, притекающих к узлу равна сумме токов уходящих от него, т.е. алгебраическая сумма токов в узле равна нулю. ∑I =0
К контурам применяется II закон Кирхгофа, согласно которому алгебраическая сумма ЭДС, действующих в контуре, равна сумме падений напряжений на всех сопротивлениях контура.
∑E = ∑IR
По первому и второму законам Кирхгофа составляют столько уравнений, сколько неизвестных токов в цепи. По первому закону Кирхгофа составляют n-1 уравнений, где n – число узлов в цепи. Недостающие уравнения составляют по второму закону Кирхгофа.
Рассмотрим применение метода на примере сложной электрической цепи, схема которой представлена на рис. 1.10
Рис. 1.10. Сложная электрическая цепь постоянного тока.
Расчет токов, протекающих в ветвях сложной цепи, проводят по следующим правилам:
По возможности упрощают схему, заменяя параллельно соединенные сопротивления одним эквивалентным. Для рассматриваемой схемы имеем
R567
=
Определяют количество искомых токов в цепи и произвольно задают их направления. Количество искомых токов равно количеству ветвей в цепи. В рассматриваемой цепи после упрощения остается три ветви abcd, ad, afed, следовательно, требуется найти значения трех токов I1, I2, I3, для чего необходимо составить три уравнения по законам Кирхгофа.
Определяют количество узлов в цепи и для всех узловых точек, кроме одной составляют уравнения по первому закону Кирхгофа. В рассматриваемой цепи две узловые точки a и d. Поэтому, по первому закону Кирхгофа составляется одно уравнение для узловой точки a, в соответствии с заданными направлениями токов
I1 + I2 = I3 (1.11)
Выбирают произвольное направление обхода контуров по или против часовой стрелки и по второму закону Кирхгофа составляют недостающие уравнения. Для рассматриваемой цепи необходимо составить еще два уравнения. Они составляются по второму закону Кирхгофа, для контуров adef и abcd в соответствии с выбранными направлениями их обхода. При этом ЭДС и токи, совпадающие с направлением обхода контура, принимают со знаком плюс, а ЭДС и токи, противоположные этому направлению, со знаком минус. В результате получаем
E1 = I1 (R1+R2+R3) + I3R8 (1.12)
E2 = I2 (R567+R4) + I3R8 (1.13)
5. Определяют неизвестные токи в ветвях, решая полученную систему уравнений (1.11), (1.12), (1.13). Если какие-то значения при расчете получаются со знаком минус, то это означает, что направления реальных токов противоположны заданным в начале расчета.
Проверку решения задачи осуществляют путем расчета уравнения баланса мощностей: алгебраическая сумма мощностей развиваемых всеми источниками ЭДС равна сумме мощностей, потребляемых всеми сопротивлениями нагрузки. В общем виде уравнение баланса мощностей записывается как ∑EI=∑I2R.
Применительно к рассматриваемой цепи, уравнение баланса мощностей принимает вид:
E1I1+E2I2
= I(R1+R2+R3)
+ I
(R4+R567)
+I
R8
(1.14)
Если направление ЭДС совпадает с направлением тока в ветви, то их произведение включается в левую часть уравнения со знаком плюс, а если не
совпадает,
то со знаком минус, т.е.E
I
(+) и EI
(-). Если расчет токов проведен
правильно, то левая часть уравнения
(1.14) равна его правой части.