Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
3 Лекции динамика.doc
Скачиваний:
286
Добавлен:
02.04.2015
Размер:
839.68 Кб
Скачать

Теорема об изменении кинетической энергии

механической системы

Кинетической энергией механической системы называется арифметическая сумма кинетических энергий всех ее материальных точек

. (83)

Вычисление кинетической энергии твердого тела

1. Поступательное движение

Как известно, при поступательном движении скорости всех точек тела в один и тот же момент времени равны, тогда (83) можно представить в виде

. (84)

При поступательном движении тела, его кинетическая энергия равна половине произведения массы на квадрат скорости центра масс.

2. Вращательное движение твердого тела

При вращательном движении скорость каждой точки тела

. (85)

Подставим (85) в (83):

.

Принимая во внимание (59), получим

. (86)

При вращательном движении кинетическая энергия равна половине произведения момента инерции тела относительно оси вращения на квадрат угловой скорости.

3. Плоское движение

Плоское движение можно представить как вращение относительно полюса (например, центра масс) и движения вместе с полюсом, тогда

. (87)

Кинетическая энергия тела при плоском движении равна сумме кинетических энергий от поступательного движения вместе с центром масс и вращательного движения относительно центра масс.

Теорема: Изменение кинетической энергии механической системы на некотором ее перемещении равно сумме работ всех внутренних и внешних сил системы на том же перемещении

. (88)

Замечания:

1. Введенная величина кинетической энергии системы в отличие от количества движения системы и кинетического момента является скалярной величиной. При этом:

Q=0 при вращательном движении и покое;

KO=0 при поступательном движении или покое;

T=0 только для неподвижной системы.

Таким образом, в отличие от теоремы об изменении количества движения и кинетического момента, данная теорема пригодна для изучения любого вида движения, так как T=0 только для неподвижной системы.

2. В отличие от упомянутых теорем данная теорема учитывает действие внутренних сил системы.

Некоторые случаи вычисления работы

1. Работа момента силы MZ относительно оси равна произведению момента на угол поворота тела относительно оси

. (89)

2. Сумма работ внутренних сил абсолютно твердого тела (недеформируемого) всегда равна нулю.

3. Работа момента трения качения.

,

где - коэффициент трения качения;

R – радиус цилиндра;

s – длина дуги, равная отрезку пути, пройденного центром масс C вдоль поверхности;

- угол поворота осей цилиндра в процессе движения;

N – нормальная реакция поверхности;

P – сила тяжести;

Fтр – сила трения скольжения.

Дифференциальные уравнения поступательного, вращательного и плоского движения твердого тела

1. Поступательное движение

При поступательном движении все точки тела движутся по одинаковым траекториям и в один и тот же момент времени имеют одинаковые ускорения. Тогда для описания движения можно использовать теорему о движении центра масс (67). Проектируем это уравнение на координатные оси

. (90)

Система (90) представляет собой дифференциальные уравнения поступательного движения твердого тела.

2. Вращательное движение

Пусть твердое тело совершает вращение относительно оси под действием сил. Динамической характеристикой вращательного движения твердого тела является кинетический моментKz, а характеристикой вращательного действия силы  момент силы относительно оси. Поэтому для описания вращательного движения твердого тела относительно неподвижной оси воспользуемся теоремой об изменении кинетического момента (81)

. (91)

При вращательном движении , тогда

,

учитывая, что Iz=const, в итоге получим

. (92)

Уравнение (92) представляет собой дифференциальное уравнение вращательного движения твердого тела вокруг неподвижной оси.

Найденный угол будет определять положение тела, совершающего вращательное движение, в любой момент времени.

3. Плоское движение

Положение тела, совершающего плоское движение, в любой момент времени определяется положением полюса и углом поворота тела относительно полюса. Если за полюс принять центр масс тела, то уравнение его движения можно найти по теореме о движении центра масс (67), а вращательное движение относительно центра будет определяться уравнением (92), справедливым и для движения системы относительно оси, проходящей через центр масс. Тогда дифференциальные уравнения плоского движения твердого тела имеют вид

.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]