
- •Introduction
- •Increasing Demand for Wireless QoS
- •Technical Approach
- •Outline
- •The Indoor Radio Channel
- •Time Variations of Channel Characteristics
- •Orthogonal Frequency Division Multiplexing
- •The 5 GHz Band
- •Interference Calculation
- •Error Probability Analysis
- •Results and Discussion
- •IEEE 802.11
- •IEEE 802.11 Reference Model
- •IEEE 802.11 Architecture and Services
- •Architecture
- •Services
- •802.11a Frame Format
- •Medium Access Control
- •Distributed Coordination Function
- •Collision Avoidance
- •Post-Backoff
- •Recovery Procedure and Retransmissions
- •Fragmentation
- •Hidden Stations and RTS/CTS
- •Synchronization and Beacons
- •Point Coordination Function
- •Contention Free Period and Superframes
- •QoS Support with PCF
- •The 802.11 Standards
- •IEEE 802.11
- •IEEE 802.11a
- •IEEE 802.11b
- •IEEE 802.11c
- •IEEE 802.11d
- •IEEE 802.11e
- •IEEE 802.11f
- •IEEE 802.11g
- •IEEE 802.11h
- •IEEE 802.11i
- •Overview and Introduction
- •Naming Conventions
- •Enhancements of the Legacy 802.11 MAC Protocol
- •Transmission Opportunity
- •Beacon Protection
- •Direct Link
- •Fragmentation
- •Traffic Differentiation, Access Categories, and Priorities
- •EDCF Parameter Sets per AC
- •Minimum Contention Window as Parameter per Access Category
- •Maximum TXOP Duration as Parameter per Access Category
- •Collisions of Frames
- •Other EDCF Parameters per AC that are not Part of 802.11e
- •Retry Counters as Parameter per Access Category
- •Persistence Factor as Parameter per Access Category
- •Traffic Streams
- •Default EDCF Parameter Set per Draft 4.0, Table 20.1
- •Hybrid Coordination Function, Controlled Channel Access
- •Controlled Access Period
- •Improved Efficiency
- •Throughput Improvement: Contention Free Bursts
- •Throughput Improvement: Block Acknowledgement
- •Delay Improvement: Controlled Contention
- •Maximum Achievable Throughput
- •System Saturation Throughput
- •Modifications of Bianchi’s Legacy 802.11 Model
- •Throughput Evaluation for Different EDCF Parameter Sets
- •Lower Priority AC Saturation Throughput
- •Higher Priority AC Saturation Throughput
- •Share of Capacity per Access Category
- •Calculation of Access Priorities from the EDCF Parameters
- •Markov Chain Analysis
- •The Priority Vector
- •Results and Discussion
- •QoS Support with EDCF Contending with Legacy DCF
- •1 EDCF Backoff Entity Against 1 DCF Station
- •Discussion
- •Summary
- •1 EDCF Backoff Entity Against 8 DCF Stations
- •Discussion
- •Summary
- •8 EDCF Backoff Entities Against 8 DCF Stations
- •Discussion
- •Summary
- •Contention Free Bursts
- •Contention Free Bursts and Link Adaptation
- •Simulation Scenario: two Overlapping QBSSs
- •Throughput Results with CFBs
- •Throughput Results with Static PHY mode 1
- •Delay Results with CFBs
- •Conclusion
- •Radio Resource Capture
- •Radio Resource Capture by Hidden Stations
- •Solution
- •Mutual Synchronization across QBSSs and Slotting
- •Evaluation
- •Simulation Results and Discussion
- •Conclusion
- •Prioritized Channel Access in Coexistence Scenarios
- •Saturation Throughput in Coexistence Scenarios
- •MSDU Delivery Delay in Coexistence Scenarios
- •Scenario
- •Simulation Results and Discussion
- •Conclusions about the HCF Controlled Channel Access
- •Summary and Conclusion
- •ETSI BRAN HiperLAN/2
- •Reference Model (Service Model)
- •System Architecture
- •Medium Access Control
- •Interworking Control of ETSI BRAN HiperLAN/2 and IEEE 802.11
- •CCHC Medium Access Control
- •CCHC Scenario
- •CCHC and Legacy 802.11
- •CCHC Working Principle
- •CCHC Frame Structure
- •Requirements for QoS Support
- •Coexistence Control of ETSI BRAN HiperLAN/2 and IEEE 802.11
- •Conventional Solutions to Support Coexistence of WLANs
- •Coexistence as a Game Problem
- •The Game Model
- •Overview
- •The Single Stage Game (SSG) Competition Model
- •The Superframe as SSG
- •Action, Action Space A, Requirements vs. Demands
- •Abstract Representation of QoS
- •Utility
- •Preference and Behavior
- •Payoff, Response and Equilibrium
- •The Multi Stage Game (MSG) Competition Model
- •Estimating the Demands of the Opponent Player
- •Description of the Estimation Method
- •Evaluation
- •Application and Improvements
- •Concluding Remark
- •The Superframe as Single Stage Game
- •The Markov Chain P
- •Illustration and Transition Probabilities
- •Definition of Corresponding States and Transitions
- •Solution of P
- •Collisions of Resource Allocation Attempts
- •Transition Probabilities Expressed with the QoS Demands
- •Average State Durations Expressed with the QoS Demands
- •Result
- •Evaluation
- •Conclusion
- •Definition and Objective of the Nash Equilibrium
- •Bargaining Domain
- •Core Behaviors
- •Available Behaviors
- •Strategies in MSGs
- •Payoff Calculation in the MSGs, Discounting and Patience
- •Static Strategies
- •Definition of Static Resource Allocation Strategies
- •Experimental Results
- •Scenario
- •Discussion
- •Persistent Behavior
- •Rational Behavior
- •Cooperative Behavior
- •Conclusion
- •Dynamic Strategies
- •Cooperation and Punishment
- •Condition for Cooperation
- •Experimental Results
- •Conclusion
- •Conclusions
- •Problem and Selected Method
- •Summary of Results
- •Contributions of this Thesis
- •Further Development and Motivation
- •IEEE 802.11a/e Simulation Tool “WARP2”
- •Model of Offered Traffic and Requirements
- •Table of Symbols
- •List of Figures
- •List of Tables
- •Abbreviations
- •Bibliography

9.2 Static Strategies |
193 |
9.2.1Definition of Static Resource Allocation Strategies
In this section, four fundamental strategies are defined and described in detail.
9.2.1.1Static Strategy “Persist” (STRAT-P)
The strategy STRAT-P may be interpreted as the one selected by wireless LANs that are not following any game approach. A player representing such a wireless LAN selects actions as they are defined by its requirement, without taking into account the resource allocations of an opponent player. A player that follows STRAT-P is referred to as myopic, as it is not aware of any activity of other players in its environment. The Figure 9.1 illustrates this strategy as machine with a single state, using the notation of Osborne and Rubinstein (1994).
9.2.1.2Static Strategy “Best Response” (STRAT-B)
The strategy STRAT-B implements the rational behavior, which attempts to maximize the payoff by estimating the opponent player’s behavior. If all players select this strategy, players will adjust into a Nash equilibrium. How fast this adjustment process converges into the equilibrium depends on the success of the prediction, as explained in Section 7.4, p. 152.
9.2.1.3Static Strategy “Coop” (STRAT-C)
The strategy STRAT-C implements the cooperative behavior without taking into account any effect of this behavior on the resulting outcome. Note that there are many games where cooperation is not the desirable behavior because it leads to very small observed payoffs for the cooperating players.
all resulting payoffs
n=1 |
PERSIST: BEH-P |
|
|
Figure 9.1: Strategy STRAT-P as machine in the notation of Osborne and Rubin- |
stein (1994). There is one state labeled as PERSIST, |
which is the initial state at |
stage n =1 . In this state, the player plays the behavior |
BEH-P as defined in Sec- |
tion 8.3.2.1, p. 184. The strategy is static, thus, upon any outcome of a SSG, the player will play BEH-P in the complete MSG.