- •1. Система обеспечения информационной безопасности в Российской Федерации.
- •1.1 Понятие «система обеспечения информационной безопасности».
- •1.2 Государственная система обеспечения информационной безопасности рф и ее структура.
- •1.4 Общая характеристика деятельности федеральных органов исполнительной власти рф в области обеспечения информационной безопасности: фстэк, фсб, фсо, свр, мо, мвд рф.
- •2. Значение и цели защиты информации в современной России.
- •2.1 Общая характеристика целей защиты информации.
- •2.2 Соответствие целей защиты информации характеру защищаемой информации и характеристикам субъектов информационных отношений.
- •3. Угрозы безопасности информации.
- •3.1 Понятие «угроза безопасности информации». Причины возникновения угроз безопасности информации. Классификация и характеристика угроз.
- •3.2 Разработка моделей угроз безопасности информации конкретной организации.
- •3.3 Определение актуальности угроз.
- •3.4 Ущерб организации в результате реализации угроз безопасности информации.
- •3.5 Виды ущерба. Структура прямых и косвенных потерь при реализации угроз безопасности информации.
- •4. Каналы и методы несанкционированного доступа к информации.
- •4.2 Методы несанкционированного доступа к информации, применяемые при использовании каждого канала.
- •4.3 Классификация каналов несанкционированного доступа к информации.
- •4.4 Понятие «атаки» на информационную систему. Основные методы реализации атак на информационные системы.
- •5. Уязвимость информации в информационных системах.
- •5.1 Понятие уязвимости информации в информационных системах. Причины возникновения уязвимости информации.
- •5.2 Классификация уязвимостей информации.
- •5.3 Понятие «утечка информации». Общая характеристика каналов утечки информации из информационных систем.
- •5.4 Порядок оценки уязвимости информации в информационных системах.
- •6. Риски информационной безопасности.
- •6.1 Понятие «риск информационной безопасности».
- •7. Объекты защиты информации.
- •7.1 Понятие «рубеж защиты информации».
- •7.2 Классификация и особенности видов носителей информации с позиции обеспечения безопасности.
- •8. Классификация методов и средств защиты информации.
- •8.1 Классификация и общая характеристика методов и средств защиты информации: инженерно-технические, программно-аппаратные, средства аудита информационной безопасности.
- •9. Механизмы защиты государственной тайны.
- •9.2 Перечень сведений, отнесенных к государственной тайне в соответствии с требованиями Указа Президента рф № 1203 1995 года «Об утверждении Перечня сведений, отнесенных к государственной тайне».
- •10. Механизмы защиты, основанные на разделении конфиденциальной информации на виды тайны.
- •10.2 Основания и методика отнесения сведений к коммерческой тайне на основе требований Указа Президента рф № 188 1997 года «Об утверждении Перечня сведений конфиденциального характера».
- •10.3 Понятие «служебная тайна» в соответствии с требованиями Указа Президента рф № 188 1997 года «Об утверждении Перечня сведений конфиденциального характера».
- •Федеральный закон о служебной тайне
- •2. Порядок обращения с документами, содержащими служебную информацию ограниченного распространения
- •Глава 3. Права субъекта персональных данных
- •Глава 4. Обязанности оператора
- •11. Механизмы защиты информации в информационных системах документооборота.
- •11.3 Средства и технологии эп: удостоверяющие центры и их функции, сертификаты ключа проверки эп; классы сертификатов и их отличия.
- •12. Механизмы управления информационной безопасностью.
- •12.2 Понятие «Политика информационной безопасности организации». Цель Политики. Документальное оформление Политики: структура, основное содержание разделов.
- •12.3 Последовательность разработки Политики информационной безопасности организации. Пересмотр и оценка Политики.
- •1. Первоначальный аудит безопасности
- •2. Разработка
- •3. Внедрение
- •4. Аудит и контроль
- •5. Пересмотр и корректировка
- •13. Механизмы менеджмента информационной безопасности.
- •13.1 Управление информационной безопасностью предприятия на основе положений гост р исо/мэк 27001-2006.
- •13.2 Использование процессного подхода в управлении информационной безопасностью на основе модели pdca: планирование - реализация - проверка - улучшение. Перечень действий на каждой стадии модели.
- •1. Средства защиты информации, встроенные в системное программное обеспечение.
- •1.1 Общая характеристика системы защиты информации, встроенной в современную операционную систему. Понятие, сущность и общая характеристика процессов аутентификации, авторизации и аудита.
- •1.4 Процедура аудита, осуществляемого средствами операционной системы. Сущность аудита, его роль в обеспечении безопасности и выполняемые функции.
- •1.5 Журналы событий и безопасности Windows. Порядок использования содержания журналов для получения сведений в целях обеспечения безопасности.
- •2. Прикладные программные средства защиты информации.
- •2.4 Средства создания виртуальных частных сетей. Понятие, возможности, принцип действия и область использования технологии vpn. Состав сети и основные функциональные возможности vpn.
- •Intranet vpn
- •Internet vpn
- •2.5 Средства обнаружения и предотвращения атак. Понятие, классификация и примеры сетевых атак.
- •3. Программно-аппаратные средства защиты информации.
- •3.2 Электронная подпись (эп). Контроль целостности информации с использованием эп. Процессы формирования и проверки эп. Технология использования эп.
- •4. Системы резервного копирования.
- •5. Обеспечение безопасности информации в «облачных» вычислениях.
- •Практика
- •11. Управление параметрами логического входа в операционную систему ms Windows с использованием программно-аппаратных средств биометрической аутентификации.
- •12. Защита ресурсов операционной системы ms Windows от нсд с использованием программно-аппаратного средства.
- •16. Обнаружение закладочных устройств в защищаемом помещении предприятия.
- •16.1 Практическое обнаружение излучающих закладочных устройств в защищаемом помещении предприятия с использованием поискового комплекса «Крона».
- •16.2 Практическое обнаружение неизлучающих закладочных устройств в защищаемом помещении предприятия с использованием нелинейного локатора nr-900ems.
- •17. Разработка плана расследования инцидента информационной безопасности в должности руководителя (сотрудника) группы реагирования.
- •1. Общая характеристика каналов утечки информации.
- •2. Способы и средства инженерно-технической защиты информации.
- •2.4 Общая характеристика средств нейтрализации угроз. Средства управления системами защиты. Интегрированные системы защиты.
- •3. Оценка защищенности объектов информатизации.
- •4. Аттестация объектов информатизации по требованиям безопасности информации.
- •1. Реализация проекта создания системы защиты информации (приобретения технических, программно-аппаратных средств защиты информации).
- •2. Моделирование затрат на информационную безопасность.
- •1. Методы криптографической защиты информации.
- •2. Симметричные алгоритмы шифрования.
- •2.1 Модель симметричной криптосистемы. Примеры алгоритмов симметричного шифрования: des, Triple des, aes и их основные характеристики.
- •3. Асимметричные алгоритмы шифрования.
- •4. Электронная подпись.
- •1. Управление инцидентами информационной безопасности на предприятии.
- •1.1 Менеджмент инцидентов информационной безопасности на основе требований нормативных документов. Общая характеристика и краткое содержание этапов менеджмента инцидентов информационной безопасности.
2. Прикладные программные средства защиты информации.
2.1 Общая характеристика средств защиты информации, поставляемых в виде отдельных программных модулей, оболочек и сред. Классификация, примеры средств защиты информации, их назначение и выполняемые функции.
Специализированные программные средства защиты информации от
несанкционированного доступа обладают в целом лучшими возможностями и
характеристиками, чем встроенные средства сетевых ОС. Из наиболее распространенных
решений следует отметить следующие средства защиты информации:
Программы шифрования и криптографические системы защиты информации. Шифрование
представляет собой сокрытие информации от неавторизованных лиц с предоставлением в это
же время авторизованным пользователям доступа к ней. Пользователи называются
авторизованными, если у них есть соответствующий ключ для дешифрования информации.
Еще одной важной концепцией, является то, что цель любой системы шифрования
максимальное усложнение получения доступа к информации неавторизованными лицами,
даже если у них есть зашифрованный текст и известен алгоритм, использованный для
шифрования. Пока неавторизованный пользователь не обладает ключом, секретность и
целостность информации не нарушается.
Firewalls – брандмауэры. Между локальной и глобальной сетями создаются специальные
промежуточные серверы, которые инспектируют и фильтруют весь проходящий через них
трафик сетевого/транспортного уровней. Это позволяет резко снизить угрозу
несанкционированного доступа извне в корпоративные сети, но не устраняет эту опасность
полностью. Более защищенная разновидность метода – это способ маскарада (masquerading),
когда весь исходящий из локальной сети трафик посылается от имени firewall-сервера, делая
локальную сеть практически невидимой.
Proxy-servers (proxy – доверенность, доверенное лицо). Весь трафик сетевого/транспортного
уровней между локальной и глобальной сетями запрещается полностью – маршрутизация
как таковая отсутствует, а обращения из локальной сети в глобальную происходят через специальные серверы-посредники. Очевидно, что при этом обращения из глобальной сети в
локальную становятся невозможными в принципе. Этот метод не дает достаточной защиты
против атак на более высоких уровнях – например, на уровне приложения (вирусы, код Java
и JavaScript).
VPN (виртуальная частная сеть) позволяет передавать секретную информацию через сети, в
которых возможно прослушивание трафика посторонними людьми. Виртуальные частные
сети обладают несколькими характеристиками: трафик шифруется для обеспечения защиты
от прослушивания, осуществляется аутентификация удаленного сайта, виртуальные частные
сети обеспечивают поддержку множества протоколов (используемые технологии: PPTP,
PPPoE, IPSec.), соединение обеспечивает связь только между двумя конкретными
абонентами.
Системы обнаружения вторжений (IDS) и системы предотвращения вторжений (IPS).
Обнаружение вторжений - это активный процесс, при котором происходит обнаружение
злоумышленника при его попытках проникнуть в систему. При обнаружении
несанкционированных действий такая система выдаст сигнал тревоги о попытке
проникновения. Обнаружение вторжений помогает при превентивной идентификации
активных угроз посредством оповещений и предупреждений о том, что злоумышленник
осуществляет сбор информации, необходимой для проведения атаки. Системы
предотвращения вторжений помимо обнаружения запрещенных действий в сети могут также
принимать активные меры по их предотвращению. Основными недостатками таких систем
можно назвать невозможность обнаружить все атаки, осуществляемые на сеть и ложные
срабатывания.
Предотвращение утечек (англ. Data Loss Prevention, DLP) — технологии предотвращения утечек конфиденциальной информации из информационной системы вовне, а также технические устройства (программные или программно-аппаратные) для такого предотвращения утечек.
DLP-системы строятся на анализе потоков данных, пересекающих периметр защищаемой информационной системы. При детектировании в этом потоке конфиденциальной информации срабатывает активная компонента системы, и передача сообщения (пакета, потока, сессии) блокируется.
2.2 Аутентификация на основе физических (аппаратных) ключей. Варианты реализации аппаратных ключей и их технические характеристики. Технологическая схема аутентификации. Преимущества и недостатки аутентификации на основе аппаратных ключей. Примеры программной (программно-аппаратной) реализации.
Наиболее распространенным и надежным способом защиты от несанкционированного запуска стали программно-аппаратные ключи, подключаемые к COM-, LPT- или USB-портам. Почти все коробочные варианты серьезного коммерческого ПО используют программно-аппаратные комплексы защиты, более известные как аппаратные ключи защиты. Такие способы защиты основаны на том, что в компьютер добавляется специальное физическое защитное устройство, к которому при запуске защищаемой программы обращается ее контролирующая часть, проверяя наличие ключа доступа и его параметров. Если ключ не найден (устройства обычно формируют еще и код ответа, который затем анализируется программой), то программа не запустится (или не будет разрешен доступ к данным).
Общий принцип работы компьютера в этом случае следующий. После запроса на выполнение защищаемой программы происходят ее загрузка в оперативную память и инициализация контролирующей части. На физическое устройство защиты, подсоединенное к компьютеру, посылается запрос. В ответ формируется код, посылаемый через микропроцессор в оперативную память для распознавания контролирующей частью программы. В зависимости от правильности кода ответа программа либо прерывается, либо выполняется.
В дальнейшем сфера применения таких ключей значительно расширилась. Сегодня этот ключ используется для идентификации владельца, для хранения его личной электронной подписи, конфиденциальной информации, а также как кредитная смарт-карта или электронные деньги.
Таким образом, мы имеем сегодня недорогое средство для широкомасштабного внедрения смарт-ключей в качестве персональных идентификаторов или в составе так называемых ААА-систем (аутентификация, авторизация и администрирование). До сих пор предлагалось оснащать компьютеры специальными считывателями, что, конечно, нереально. Современные устройства биометрической аутентификации пользователей (столь часто показываемые в голливудских фильмах) типа систем, работающих с отпечатками пальцев или со снимками радужной оболочки глаза, стоят настолько дорого, что не найдут широкого практического применения. При этом в любом случае следует помнить, что абсолютно надежной защиты не существует. Любую защиту можно сломать, поэтому необходимо искать оптимальное соотношение затрат на создание защиты и прогнозируемых затрат на ее взлом, учитывая также ценовое соотношение с самими защищаемыми продуктами.
Наилучшим решением, по мнению экспертов, являются смарт-карты — их невозможно подделать, вероятность сбоя в работе практически исключена, аутентификация пользователя производится на локальной рабочей станции, а не на сервере, то есть исключена возможность перехвата информации в сети и т.д. Единственным недостатком смарт-карты может быть только необходимость специального карт-ридера (устройства считывания), но эту проблему решают устройства, интегрированные со считывателем, которые подключаются напрямую к USB-порту. Эти небольшие высокотехнологичные устройства обеспечивают авторизацию владельца в компьютерных системах, осуществляют безопасное хранение сертификатов, электронных подписей и т.д. и могут использоваться в электронных платежных системах (электронных «кошельках» для Интернета).
Сегодня все острее встает проблема обеспечения безопасности при использовании сетевых технологий и все более насущной становится потребность в решениях по защите мобильных пользователей. Появляются и беспроводные аппаратные ключи защиты приложений, работающие по технологии Bluetooth. Так, тайваньская компания First International Computer продемонстрировала PDA с соответствующим модулем и беспроводной аппаратный ключ защиты приложений BlueGenie, разработанный в сотрудничестве с Silicon Wave.дним из наиболее распространенных в России защитных устройств такого типа является устройство HASP (Hardware Against Software Piracy) от компании Aladdin, по сути ставшее стандартом де-факто. Aladdin Software Security R.D. — это российская компания, представитель мирового лидера в области разработки и производства систем аутентификации, защиты информации при работе с Интернетом и защиты программного обеспечения от несанкционированного использования Aladdin Knowledge Systems Ltd (http://www.aladdin.ru/).
HASP — это аппаратно-программная инструментальная система, предназначенная для защиты программ и данных от нелегального использования, пиратского тиражирования и несанкционированного доступа к данным, а также для аутентификации пользователей при доступе к защищенным ресурсам. В первых версиях это небольшое устройство подключалось к параллельному порту компьютера. Затем появились USB-HASP-устройства. Иметь маленький USB-ключ значительно удобнее, чем большой 25-штырьковый сквозной разъем, да и часто возникающие проблемы с совместимостью ключей и устройств, работающих через параллельный порт, типа принтеров и ZIP-дисководов изрядно утомляли пользователей. А с USB-устройствами работает автоматическое подключение (рlug-and-рlay), порты USB выносятся на переднюю панель, встраиваются в клавиатуру и монитор. А если даже такого удобного разъема под рукой нет, то в комплекте с этими ключами часто продают удлинители. Существуют несколько разновидностей ключей — с памятью, с часами и т.д.
Основой ключей HASP является специализированная заказная микросхема — ASIC (Application Specific Integrated Circuit), имеющая уникальный для каждого ключа алгоритм работы. Принцип защиты состоит в том, что в процессе выполнения защищенная программа опрашивает подключенный к компьютеру ключ HASP. Если HASP возвращает правильный ответ и работает по требуемому алгоритму, то программа выполняется нормально. В противном случае, по усмотрению разработчика программы, она может завершаться, переключаться в демонстрационный режим или блокировать доступ к каким-либо функциям программы.
Используя память ключа, разработчик может:
управлять доступом к различным программным модулям и пакетам программ;
назначать каждому пользователю защищенных программ уникальный номер;
сдавать программы в аренду и распространять их демо-версии с ограничением количества запусков;
хранить в ключе пароли, фрагменты кода программы, значения переменных и другую важную информацию.
У каждого ключа HASP с памятью имеется уникальный опознавательный номер, или идентификатор (ID-number), доступный для считывания защищенными программами и позволяющий различать пользователей. Идентификатор присваивается электронному ключу в процессе изготовления, что делает невозможным его замену, но гарантирует надежную защиту от повтора. С использованием идентификатора можно шифровать содержимое памяти и использовать возможность ее дистанционного перепрограммирования.
|
|
Hardlockardlock — это электронный ключ компании Aladdin, предназначенный для защиты приложений и связанных с ними файлов данных, позволяющий программировать ключи защиты и лицензировать авторское программное обеспечение. Механизм работы ключей Hardlock базируется на заказном ASIC-чипе со встроенной EEPROM-памятью.
Чип имеет сложную внутреннюю организацию и нетривиальные алгоритмы работы. Логику работы чипа практически невозможно реализовать с помощью стандартных наборов микросхем, его очень сложно воспроизвести, а содержащийся в его памяти микрокод — считать, расшифровать или эмулировать.
Такие ключи могут устойчиво работает во всех компьютерах (включая ноутбуки), на различных портах, в самых разных режимах, позволяя подключать через них практически любые устройства — принтеры, сканеры, модемы и т.п. А малый ток потребления позволяет каскадировать любое количество ключей.
Hardlock осуществляет защиту 16- и 32-разрядных приложений и связанных с ними файлов данных в прозрачном режиме. При чтении данные автоматически расшифровываются, при записи — зашифровываются с использованием заданного аппаратно-реализованного алгоритма. Эта возможность может использоваться также для хранения и безопасной передачи информации в сети Интернет.
|
|
eTokenак уже говорилось, наилучшим решением сегодня в области защиты информации являются смарт-карты, но для их использования необходимы специальные устройства считывания (карт-ридеры). Эту проблему снимают устройства типа eToken — электронные смарт-ключи производства той же компании Aladdin, подключаемые напрямую к USB-порту.
eToken — это полнофункциональный аналог смарт-карты, выполненный в виде брелока. Он напрямую подключается к компьютеру через USB-порт и не требует наличия дорогостоящих карт-ридеров и других дополнительных устройств. Основное назначение eToken — аутентификация пользователя при доступе к защищенным ресурсам сети и безопасное хранение цифровых сертификатов, ключей шифрования, а также любой другой секретной информации.
Каждому брелоку eToken можно присвоить уникальное имя, например имя его владельца. Чтобы узнать имя владельца eToken, достаточно подключить брелок к USB-порту и открыть окно «Свойства». Однако получить доступ к защищенной памяти eToken и воспользоваться этим брелоком без знания специального PIN-кода нельзя.
Кроме того, eToken выполнен в прочном водонепроницаемом корпусе и защищен от воздействия окружающей среды. Он имеет защищенную энергонезависимую память (модели PRO и RIC снабжены микропроцессором). Небольшой размер позволяет носить его на связке с ключами.
Если нужно подключить к компьютеру несколько ключей одновременно, а USB-портов не хватает, то можно воспользоваться концентратором (USB-HUB). Для удобства применения eToken поставляется вместе с удлинителем для USB-порта.
Таким образом, eToken может стать универсальным ключом, легко интегрируемым в различные системы для обеспечения надежной аутентификации. С его помощью можно осуществлять безопасный доступ к защищенным Web-страницам, к сетям, отдельным приложениям и т.д. Универсальность применения, легкость в использовании, удобство для пользователей и администраторов, гарантированное качество делают его прекрасным средством при необходимости использовать цифровые сертификаты и защищенный доступ.
|
|
* случае если объем конфиденциальной информации довольно значителен, можно воспользоваться устройством Secret Disk, выполненным с применением технологии eToken. Secret Disk — это разработка компании Aladdin Software Security R.D., предназначенная для защиты конфиденциальной информации на персональном компьютере с ОС Windows 2000/XP.
Принцип защиты данных при помощи системы Secret Disk заключается в создании на компьютере пользователя защищенного ресурса — секретных дисков, предназначенных для безопасного хранения конфиденциальной информации. Доступ к этой информации осуществляется посредством электронного ключа eToken, подсоединяемого к USB-порту компьютера. Доступ к информации, защищенной системой Secret Disk, получают только непосредственный владелец информации и авторизованные им доверенные лица, имеющие электронный ключ eToken и знающие его PIN-код. Для других пользователей защищенный ресурс будет невидим и недоступен. Более того, они даже не догадаются о его наличии.
Устанавливая на компьютере систему Secret Disk, пользователь может быть уверен в сохранности защищаемых данных. Конфиденциальная информация не может быть просмотрена, скопирована, уничтожена или повреждена другими пользователями. Она не может быть использована посторонними при ремонте или краже компьютера, а также при утере съемного зашифрованного диска.
Для защиты корпоративных серверов используется специальная версия — Secret Disk Server. Особенностью системы Secret Disk Server также является отсутствие следов закрытого «контейнера с информацией» в файловой системе. Таким образом, если злоумышленники снимут диск с вашего сервера, то они не только не смогут расшифровать данные — они даже не увидят, где именно находится информация.
|
|
*ппаратно-программные средства защиты выпускаются в достаточном количестве (помимо лидера — компании Aladdin и другими производителями, в том числе и российскими). Однако если говорить о программном обеспечении, то, пожалуй, единственным способом надежной защиты является перевод ее разработки из разряда ПО в разряд платформ. Иными словами, достаточно сложный программный комплекс требует при эксплуатации тесного сотрудничества с производителем. Купить продукт легко, гораздо труднее правильно настроить его и поддерживать. Естественно, такой подход легко реализуем для систем корпоративного назначения, но плохо применим к коробочным программам для широкого пользователя. Однако и в этом направлении работы уже давно ведутся (подписка на ПО, мультимедийные программы с онлайновым обращением и пр.), и производитель получает дополнительные возможности для улучшения защиты.
Что касается проблем аутентификации, то все чаще применяется технология PKI (Public Key Infrastructure), использующая системы сертификатов и специальных серверов для их проверки — центров сертификации CA (Certification Authorities). Одни из самых популярных систем сертификации — RSA Keon, Baltimore, Verisign и Entrust, работающие по протоколам HTTP и LDAP (сертификаты X.509). Центр сертификации уже входит в поставку Windows 2000 Server; в платформе .Net будет встроена поддержка цифровых сертификатов. Остается нерешенной только проблема защищенного хранения цифровых сертификатов.
Однако даже индивидуальным пользователям к таким хранилищам стоит относиться с опаской: если специальное устройство хранит все пароли пользователя (в том числе и его private key) и впускает его в систему по аппаратному ключу, то достаточно подобрать к этому устройству один пароль — и все секреты как на ладони…
2.3 Межсетевые экраны. Понятие, назначение, принцип действия, перечень выполняемых функций, основы применения и настройки межсетевых экранов. Типы межсетевых экранов и особенности их защитного действия. Программные и программно-аппаратные межсетевые экраны, основные отличия, примеры программной (программно-аппаратной) реализации, преимущества и недостатки.
Межсетево́й экра́н, сетево́й экра́н, файерво́л, брандма́уэр — комплекс аппаратных или программных средств, осуществляющий контроль и фильтрацию проходящих через него сетевых пакетов в соответствии с заданными правилами.
Основной задачей сетевого экрана является защита компьютерных сетей или отдельных узлов от несанкционированного доступа. Также сетевые экраны часто называют фильтрами, так как их основная задача — не пропускать (фильтровать) пакеты, не подходящие под критерии, определённые в конфигурации.
Поддерживаемый уровень сетевой модели OSI является основной характеристикой при классификации межсетевых экранов. Различают следующие типы межсетевых экранов:
Управляемые коммутаторы (канальный уровень).
Сетевые фильтры сетевого уровня (stateless). Фильтрация статическая, осуществляется путём анализа IP-адреса источника и приёмника, протокола, портов отправителя и получателя.
Шлюзы сеансового уровня (circuit-level proxy). В сетевой модели TCP/IP нет уровня, однозначно соответствующего сеансовому уровню OSI, поэтому к шлюзам сеансового уровня относят фильтры, которые невозможно отождествить ни с сетевым, ни с транспортным, ни с прикладным уровнем:
Шлюзы, транслирующие адреса (NAT, PAT) или сетевые протоколы (транслирующий мост);
Фильтры контроля состояния канала. К фильтрам контроля состояния канала связи нередко относят сетевые фильтры сетевого уровня с расширенными возможностями (stateful), которые дополнительно анализируют заголовки пакетов и умеют фильтроватьфрагментированные пакеты);
Шлюзы сеансового уровня. Наиболее известным и популярным шлюзом сеансового уровня является посредник SOCKS;
Шлюз прикладного уровня (application-level proxy), часто называемые прокси-серверами. Делятся на прозрачные (transparent) и непрозрачные.
Брандмауэр SPI (Stateful Packet Inspection, SPI), или иначе брандмауэры с динамической фильтрацией пакетов (Dynamic Packet Filtering), являются по сути шлюзами сеансового уровня с расширенными возможностями. Инспекторы состояния оперируют на сеансовом уровне, но «понимают» протоколы прикладного и сетевого уровней. В отличие от шлюза прикладного уровня, открывающего два виртуальных канала TCP (один — для клиента, другой — для сервера) для каждого соединения, инспектор состояния не препятствует организации прямого соединения между клиентом и сервером.
Существует также понятие «межсетевой экран экспертного уровня». Сетевой экран данного типа базируются на посредниках прикладного уровня или инспекторах состояния, но обязательно комплектуются шлюзами сеансового уровня и сетевыми фильтрами, иногда понимая и сетевой уровень. Зачастую имеют систему протоколирования событий и оповещения администраторов, средства поддержки удаленных пользователей (например авторизация), средства построения виртуальных частных сетей и т. д. К нему относятся почти все имеющиеся на рынке брандмауэры.