Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Agadzanian_lek / 䨧08.doc
Скачиваний:
75
Добавлен:
25.03.2015
Размер:
198.66 Кб
Скачать

Регуляция продукции СТГ осуществляется за счет двух гормонов гипоталамуса - со-матолиберина (активирует ее) и соматостатина (тормозит продукцию). Соматолиберин преимущественно синтезируется нейронами интромедиального и аркуатного ядер гипо­таламуса. Его продукция возрастает под влиянием таких факторов, как физическая на­грузка, стрессовые воздействия, сон, а также при действии дофамина, серотонина и нора-дреналина (за счет активации а-адренорецепторов). Торможение секреции соматолибе-рина происходит под влиянием СТГ, а так же при активации (3-адренорецепторов соматолиберинпродуцирующих нейронов норадреналином или Р-адреномиметиками. Соматостатин продуцируется в тех же ядрах гипоталамуса, в других отделах ЦНС, а так­же клетками пищеварительного тракта и Д (дельта)— клетками островков Лангерганса поджелудочной железы.

Патология продукции СТГ в детском возрасте проявляет­ся в виде сниженной секреции этого гормона (гипофизарный нанизм или карликовость, при которой рост не превышает 130 см у мужчин и 120 см у Женщин), либо в виде гипер­секреции (гигантизм, при ко­тором рост может достигать 250 см и выше). Недостаточ­ное выделение СТГ может быть результатом генетичес­кого дефекта, что проявляет­ся уже в 2—3-летнем возрас­те ребенка, либо вследствие функциональной не­достаточности (психосоци­альный нанизм, который мо­жет иметь место у воспитан­ников детских домов, интер­натов). Своевременная диаг­ностика нанизма и лечение (введение гормона роста по 2—4 мг 3 раза в Неделю на протяжении 1—1,5 лет) поз­воляет довести рост ребенка до 150 см и выше и при этом исключить явление импотен­ции и стерильности, харак­терное для гипофизарного на­низма.

Гиперсекреция СТГ у взрослого человека вызывает акромегалию — рост разме­ров рук, ног, пальцев, внутрен­них органов (сердца, легких, почек, желудка), а также при­водит к снижению половой

функции и развитию сахарного диабета. Чаще всего причиной гиперсекреции СТГ являют­ся аденомы гипофиза, удаление которых дает выраженный клинический эффект.

141

Меланоцитстимулирующий гормон. Актг и эндогенные опиоиды

Меланоцитстимупирующий гормон (МСГ) вырабатывается в средней доле гипофиза у жи­вотных и воздействует на активность ферментов в меланофорах. Под его влиянием из тирози­на в присутствии тирозиназы образуется меланин. Это вещество под влиянием солнечного света переходит из дисперсионного состояния в агрегатное, что дает эффект загара.

Липотропины (бета- и гамма-) — это полипептиды, способные оказывать жиромобили-зующий эффект (активируют липолиз). Но они интересны тем, что, во-первых, обладают эффектом, подобным МСГ, а во-вторых, из них образуются эндорфины и энкефалины. На­пример, фрагмент бета-липотропина 61-76 — это альфа-эндорфин, а фрагмент 61-77 — это гамма-эндорфин, фрагмент 61-65 — метионин-энкефалин. Морфиноподобные пептиды (эн­кефалины, эндорфины) образуются из бета-липотропинина под влиянием специфичес­ких пептидов, которые локализованы в гипофизе и других участках мозга.

АКТГ — это гормон аденогипофиза. Подробнее о нем будет сказано ниже — в разделе о глюкокортикоидах. Здесь же целесообразно отметить, что АКТГ также, как и МСГ, спо­собен вызывать образование в меланофорах меланина. Оказалось, что способность к сти­муляции Образования меланина обусловлена тем, что в МСГ, АКТГ и бета-липотропине есть общий гептапептид (Кор), который и вызывает процесс перехода тирозина в меланин. А наличие такого пептида обусловлено тем, что МСГ, АКТГ, липотропины (а следователь­но, эндорфины и энкефалины) происходят из общего предшественника — проопиомелано-кортина (ПОМК).

Если меланоцитстимулирующий эффект альфа-МСГ принять за 100%, то у бета-МСГ — 50%, у АКТГ -— 1%, у гамма-липотропина — 0,5%, у бета-липотропина — 0,2%. Эти данные позволяют понять причины изменения окраски кожи («бронзовый загар») у боль­ных с недостаточностью выработки гормонов коры надпочечника, например, при болезни Аддисона — при низком уровне в крови кортизола (основной представитель глюкокортикоидов) усиливается продукция кортиколиберина и АКТГ. Именно повышение продукции АКТГ приводит к появлению пигментации при этом заболевании, которое носит название «брон­зовой болезни».

В целом, следует отметить, что при стрессовых воздействиях (см. Стресс) одновремен­но возрастает продукция гипофизарных гормонов — АКТГ, бета-липотропина, МСГ, а из бета-липотропина образуются при этом эндорфины и энкефалины. Все это способствует процессу адаптации организма: АКТГ вызывает повышенное выделение глюкокортикои-дов, МСГ способствует резистентности организма, а эндорфины и энкефалины являются компонентами стресс-лимитирующей системы (и антиноцицептивной системы) — препят­ствуют развитию отрицательных побочных эффектов, которые возникают при повышении в крови уровня глюкокортикоидов.

Адг (вазопрессин). Окситоцин

Оба гормона представляют собой 9-аминокислотные пептиды, продуцируемые нейрона­ми гипоталамуса, главным образом, супраоптическим и паравентрикулярным ядрами (пе­редний гипоталамус). АДГ и окситоцин хранятся в нейрогипофизе в накопительных тель­цах Герринга, из них они поступают в общий кровоток. Окситоцинергические и вазопрессинергические нейроны начинают усиленно секретировать эти гормоны и одновременно воз­действовать на процессы их высвобождения из накопительных телец под влиянием возбуж­дения — для этого необходимо, чтобы нейроны генерировали не менее 5 имп/с., а оптимум частоты возбуждения (при которой выделяется максимальное количество секрета) состав­ляет 20—50 имп/с.

Транспорт АДГ и окситоцина осуществляется в виде гранул, в которых эти гормоны находятся в комплексе с нейрофизином. При выделении в кровь комплекс «гормон + нейрофизин» распадается, и гормон поступает в кровь. АДГ или вазопрессин предназначен для

142

регуляции осмотического давления крови. Его секреция увеличивается под влиянием таких факторов, как: 1) повышение осмолярности крови, 2) гипокалиемия, 3) гипокальциемия, 4) повышениесодержания натрия в спинномозговой жидкости, 5) уменьшение, объема внекле­точной и внутриклеточной воды, б) снижение артериального давления, 7) повышение тем­пературы тела, 8) повышение в крови ангиотензина-П (при активации ренин-ангиотензиновой системы), 9) при активации симпатической системы (бета-адренорецепторный процесс).

Выделенный в кровь АДГ достигает эпителия собирательных трубок почки, взаимодей­ствует с вазопрессиновыми (АДГ-) рецепторами, это вызывает активацию аденилатциклазы, повышает внутриклеточную концентрацию цАМФ и приводит к активации протеинкиназы, что в конечном итоге вызывает активацию фермента, понижающего связь между эпи­телиальными клетками собирательных трубок. По мнению А. Г. Гинецинского, таким фер­ментом служит гиалуронидаза, расщепляющая межклеточный цемент — гиалуроновую кислоту. В результате — вода из собирательных трубок идет в интерстиций, где за счет поворотно-множительного механизма (см. Почки) создается высокое осмотическое давле­ние, вызывающее «притяжение» воды. Таким образом, под влиянием АДГ в значительной степени возрастает реабсорбция воды. При недостаточности выделения АДГ у больного развивается несахарное мочеизнурение, или диабет: объем мочи за сутки может достигать 20 л. И лишь применение препаратов, содержащих этот гормон, приводит к частичному восстановлению нормальной функции почек.

Свое название — «вазопрессин»— этот гормон получил в силу того, что при использо­вании его в высоких (фармакологических) концентрациях АДГ вызывает повышение арте­риального давления за счет прямого влияния на гладкомышечные клетки сосудов.

Окситоцин у женщин играет роль регулятора маточной активности и участвует в про­цессах лактации как активатор миоэпителиальных клеток. При беременности миометрий женщин становится чувствительным к окситоцину (уже в начале второй половины бере­менности достигается максимальная чувствительность миометрия к окситоцину как стиму­лятору). Однако в условиях целостного организма эндогенный или экзогенный окситоцин не способен повысить сократительную деятельность матки женщин во время беременнос­ти, так как существующий механизм торможения маточной активности (бета-адренорецеп­торный ингибирующий механизм) не дает возможность проявиться стимулирующему эф­фекту окситоцина. Накануне родов, когда происходит подготовка к плодоизгнанию, снима­ется тормозной механизм и матка приобретает чувствительность повышать свою активность под влиянием окситоцина.

Повышение продукции окситоцина окситоцинергическими нейронами гипоталамуса про­исходит под влиянием импульсов, поступающих от рецепторов шейки матки (это возникает в период раскрытия шейки матки в 1-м периоде нормально протекающих родов), что получило название «рефлекс Фергуссона», а также под влиянием раздражения механорецепторов сосков грудной железы, что имеет место при кормлении грудью. У беременных женщин (перед щами) раздражение механорецепторов сосков молочной железы тоже вызывает повышение выброса окситоцина, что (при наличии готовности к родам) проявляется усилением сократительной деятельности матки. Это так называемый маммарный тест, используемый в акушерской клинике с целью определения готовности материнского организма к родам.

Во время кормления выделяемый окситоцин способствует сокращению миоэпителиальных клеток и выбросу молока из альвеол.

Все описанные эффекты окситоцина осуществляются за счет его взаимодействия с окситоциновыми рецепторами, расположенными на поверхностной мембране клеток. В дальнейшем происходит повышение внутриклеточной концентрации ионов кальция, что и вызывает соответствующий сократительный эффект.

В акушерской литературе, в учебниках фармакологии до сих пор можно встретить ошибочное описание механизма действия окситоцина: предполагалось, что окситоцин сам по себе не действует на ГМК или миоэпителиальные клетки, а влияет на них опосредованно, за счет выделения ацетилхолина, который через М-холинорецепторы вызывает активацию

клеток. Однако в настоящее время доказано, что окситоцин действует через собственные окситоциновые рецепторы, а кроме того, установлено, что ацетилхолин у беременных жен­щин не способен активировать миометрий, так как ГМК матки при беременности и в родах рефрактерны к ацетилхолину.

Относительно функции окситоцина у мужчин — данных мало. Считают, что окситоцин участвует в регуляции водно-солевого обмена, выступая в роли антагониста АДГ. В опытах на крысах и собаках показано, что в физиологических дозах окситоцин выступает в роли эндогенного диуретика, избавляя организм от «лишней» воды. Окситоцин способен блоки­ровать продукцию эндогенного пирогена в мононуклеарыах, оказывая антипирогенный эф­фект, т. е. блокировать повышение температуры тела под влиянием пирогенов.

Таким образом, несомненно, дальнейшие исследования позволят уточнить роль оксито­цина, продуцируемого нейронами гипоталамуса, а также, как стало теперь известно, и дру­гими клетками, расположенными, например, в яичниках и матке.

ГОРМОНЫ ПОДЖЕЛУДОЧНОЙ ЖЕЛЕЗЫ

Клетки, продуцирующие гормоны, сконцентрированы в поджелудочной железе в виде островков, которые были открыты еще в 1869 году П. Лангергансом. Таких островков у взрослого человека насчитывается от 110 тысяч до 2 миллионов, но их общая масса не превы­шает 1,5 % от массы всей железы. Среди клеток островков имеются шесть различных ви­дов; каждый из них, вероятно, выполняет свою определенную функцию:

Таблица 4.

Вид клеток

Процентное содержание

Функция клеток

А или альфа

20-25

продукция глюкагона

В или бета

75—80

продукция инсулина

Д или дельта

< 1

продукция соматостатина

G или гамма

< 1

клетки — предшественницы других клеток

Е

< 1

продукция какого-то гормона?

F или РР

< 1

возможно, продукция панкреа­тического полипептида

Вопрос о продукции других гормонов (липокаина, ваготонина, центропнеина) — пока остается открытым. Поджелудочная железа привлекает огромное внимание физиологов и врачей прежде всего благодаря тому, что она продуцирует инсулин — один из важнейших гормонов организма, регулирующий уровень сахара в крови. Недостаточность этого гормо­на приводит к развитию сахарного диабета — болезни, которой страдают ежегодно около 70 миллионов людей.

Инсулин. Первые сведения о нем были получены в 1889 г. - удалив у собаки поджелудоч­ную железу, Меринг и Минковски обнаружили, что на следующее утро после операции животное было все облеплено мухами. Они догадались, что моча собаки содержит сахар. В 1921 г. Бантинг и Бест выделили инсулин, который в последующем был использован для введения больным. За эти работы ученые были удостоены Нобелевской премии. В 1953 г. была расшифрована химическая структура инсулина.

Инсулин состоит из 51 аминокислотного остатка, объединенных в две субъединицы (А и В), которые связаны между собой двумя сульфидными мостиками. Наиболее близок по ами­нокислотному составу к инсулину человека инсулин свиньи. Молекула инсулина имеет вто­ричную и третичную структуры и содержит в своем составе цинк. О процессе синтеза инсу­лина подробно изложено выше. Секреторная активность В-клеток островков Лангерганса

144

повышается под влиянием парасимпатических воздействий (блуждающий нерв), а также при участии таких веществ как глюкоза, аминокислоты, кетоновые тела, жирные кислоты, гастрин, секретин, холецистокинин-панкреозимин, которые оказывают свой эффект через соответствующие специфические рецепторы В-клеток. Угнетают продукцию инсулина сим­патические воздействия, адреналин, норадреналин (за счет активации (3-адренорецепторов В-клеток) и гормон роста. Метаболизм инсулина происходит в печени и почках под влияни­ем фермента глютатион-инсулин-трансгидролазы.

Инсулиновые рецепторы находятся на поверхностной мембране клетбк-мишеней. При взаимодействии инсулина с рецептором образуется комплекс «гормон + рецептор»; он по­гружается в цитоплазму, где под влиянием лизосомальных ферментов расщепляется; сво­бодный рецептор вновь возвращается на поверхность клетки, а инсулин оказывает свой эффект. Основными клетками-мишенями для инсулина являются гепатоциты, миокардиоциты, миофибриллы, адипоциты, т.е. гормон оказывает свое действие преимущественно в печени, сердце, скелетных мышцах и жировой ткани. Инсулин увеличивает примерно в 20 раз проницаемость клеток-мишеней для глюкозы и ряда аминокислот и тем самым спо­собствует утилизации этих веществ клетками-мишенями. Благодаря этому возрастает син­тез гликогена в мышцах и печени, синтез белков в печени, мышцах и других органах, синтез жиров в печени и жировой ткани. Важно подчеркнуть, что нейроны мозга не являются клет­ками-мишенями для инсулина. Конкретные механизмы, посредством которых инсулин по­вышает проницаемость клеток-мишеней для глюкозы и аминокислот, до настоящего време­ни неясны.

Таким образом, основная функция инсулина — регуляция уровня глюкозы в крови, пре­дотвращение чрезмерного его повышения, т.е. гипергликемии. Принято считать, что нор­мальное содержание глюкозы в крови может варьировать от 3,9 до 6,7 ммоль/л (в среднем 5,5 ммоль/л) или от 0,7 до 1,2 г/л. При инсулиновой недостаточности уровень глюкозы в крови превышает 7 ммоль/л или 1,2 г/л, что расценивается как явление гипергликемии. Если концентрация глюкозы в крови становится выше 8,9 ммоль/л или выше 1,6 г/л, то возникает глюкозурия, так как почки не способны полностью реабсорбировать глюкозу, выходящую в первичную мочу. Это влечет за собой повышение диуреза: при сахарном диабете (мочеизнурении) диурез может достигать 5 л в сутки, а иногда 8-9 л в сутки.

Если продукция инсулина повышена, например, при инсулиноме, или при избыточном Поступлении в организм инсулина - лекарства, то уровень глюкозы в крови может стать ниже 2,2 ммоль/л или 0,4 г/л, что расценивается как гипогликемия; в этом случае часто развивается гипогликемическая кома. Она проявляется такими симптомами как головокру­жение, слабость, усталость, раздражительность, появление выраженного чувства голода, выделение холодного пота. В тяжелых случаях происходит нарушение сознания, речи, расширение зрачков, резкое падение артериального давления, ослабление деятельности сердца. Гипогликемическое состояние может возникнуть и на фоне нормальной деятельности поджелудочной железы в условиях интенсивной и длительной физической нагрузки, например, при соревнованиях в беге на длинные и сверхдлинные дистанции, при марафонским заплыве и т.д.

Особое внимание заслуживает сахарный диабет. В 30% случаев он обусловлен недостаточной продукцией инсулина В-клетками поджелудочной железы (инсулинозависимый са­харный диабет). В остальных случаях (инсулинонезависимый сахарный диабет) его развитие связано с либо с тем, что нарушен контроль секреции инсулина в ответ на естественные стимуляторы высвобождения инсулина, либо обусловлено снижением концентрации инсулиновых рецепторов в клетках-мишенях, например, в результате появления аутоантител к этим рецепторам. Инсулинозависимый сахарный диабет возникает в результате образования антител к антигенам островков поджелудочной железы, что сопровождается уменьше­нием количества активных В-клеток и тем самым - падением уровня продукции инсулина. Другой причиной могут стать вирусы гепатита Коксаки, повреждающие клетки. Появление инсулинонезависимого сахарного диабета обычно связано с избыточным употреблением

145

углеводов, жиров: переедание вначале вызывает гиперсекрецию инсулина, снижение кон­центрации инсулиновых рецепторов в клетках-мишенях, а в конечном итоге приводит к инсулинорезистентности. Известна также такая форма заболевания, как диабет беремен­ных. Мы склонны рассматривать его как результат нарушения регуляции продукции инсу­лина. Согласно нашим данным, при беременности возрастает содержание в крови эндогенно­го (3-адреномиметика, который за счет активации бетта-адренорецепторов В-клеток островков Лангерганса может ингибировать секрецию инсулина. Этому способствует также повыше­ние при беременности уровня в крови так называемого эндогенного сенсибилизатора бетта-адренорецепторов (ЭСБАР), т.е. фактора, увеличивающего (3-адренореактивность клеток-мишеней в сотни раз.

При любой форме сахарного диабета углеводы не могут использоваться для нужд энер­гетики печенью, скелетными мышцами, сердцем. Поэтому существенно меняется метабо­лизм организма — на энергетические нужды, в основном, используются жиры и белки. Это ведет к накоплению продуктов неполного окисления жиров — оксимасляной кислоты и ацетоуксусной кислоты (кетоновые тела), что может сопровождаться развитием ацидоза и диабетической комы. Изменение в обмене веществ приводит к поражению сосудов, нейро­нов мозга, к патологическим изменениям в различных органах и тканях, а тем самым — к существенному снижению здоровья человека и сокращению продолжительности его жиз­ни. Длительность течения заболевания, сложное и не всегда эффективное лечение — все это указывает на необходимость профилактики сахарного диабета. Рациональное питание и здоровый образ жизни - важнейшие компоненты такой профилактики.

Глюкагон. Его молекула состоит из 29 аминокислотных остатка. Продуцируется А-клетками островков Лангерганса. Секреция глюкагона возрастает при стресс-реакциях, а также под влиянием таких гормонов как нейротензин, вещество Р, бомбезин, гормон роста. Тормо­зят секрецию глюкагона секретин и гипергликемическое состояние. Физиологические эффек­ты глюкагона во многом идентичны эффектам адреналина: под его влиянием активируется гликогенолиз, липолиз и глюконеогенез. Известно, что в гепатоцитах под влиянием глюкаго­на (глюкагон + глюкагоновые рецепторы) повышается активность аденилатциклазы, что со­провождается ростом уровня цАМФ в клетке; под ее влиянием повышается активность про-теинкиназы, которая индуцирует переход фосфорилазы в активную форму; в итоге, повышается расщепление гликогена и, тем самым, возрастает уровень глюкозы в крови.

Таким образом, глюкагон совместно с адреналином и глюкокортикоидами способствует повышению уровня энергетических субстратов в крови (глюкоза, жирные кислоты), что необходимо в различных экстремальных состояниях организма.

Соматостатин. Он продуцируется Д (дельта)-клетками островков Лангерганса. Вероят­нее всего, гормон действует паракринно, т.е. влияет на соседние клетки островков, угнетая секрецию глюкагона и инсулина. Полагают, что соматостатин снижает выделение гастрина, панкреозимина, ингибирует процессы всасывания в кишечнике, тормозит активность желч­ного пузыря. Учитывая, что многие интестинальные гормоны активируют секрецию соматостатина, можно утверждать, что этот соматостатин служит для предотвращения чрез­мерной продукции гормонов, регулирующих функции ЖКТ.

В последние годы появились факты, свидетельствующие о том, что инсулин, глкжагон и соматостатин продуцируются не только в островках Лангерганса, но и за пределами пан­креатической железы, что указывает на важную роль этих гормонов в регуляции деятель­ности висцеральных систем и метаболизма тканей.

Соседние файлы в папке Agadzanian_lek