
- •Министерство сельского хозяйства Российской Федерации
- •Введение.
- •Лекция 1 механика
- •1.1 Предмет физики.
- •1.2. Основные математические понятия
- •Приращение функции – изменение функции.
- •Основные свойства производной:
- •Градиент функции.
- •Международная система единиц «си»
- •1.3. Основы теории погрешности
- •1.4. Кинематика. Основные параметры простейших видов движения
- •Параметры вращательного движения:
- •Характеристики колебательного движения
- •1.5.Основные динамические характеристики
- •Физическая природа сил.
- •1.6.Основные законы динамики.
- •Закон сохранения импульса
- •Закон изменения импульса
- •Работа. Мощность. Энергия.
- •Закон сохранения энергии (для изолированной системы).
- •Полная энергия гармонических колебаний.
- •Вопросы для самоконтроля.
- •Список литературы Основная
- •Лекция 2 гидростатика. Гидродинамика
- •1.1.Основные законы гидростатики
- •1.2. Основные понятия и законы гидродинамики.
- •Закон Ньютона для внутреннего трения.
- •Закон Стокса.
- •Закон Пуазейля.
- •Принцип аэрации почвы.
- •1.3. Свойства жидкости.
- •Поверхностное натяжение.
- •Поверхностно активные вещества
- •1.4. Жидкость в капиллярах.
- •Вопросы для самоконтроля
- •Список литературы
- •Основные уравнения мкт.
- •Основные процессы и понятия.
- •Экспериментальные газовые законы.
- •Понятие идеального газа
- •Изотермы Ван-дер-Ваальса.
- •1.4.Диффузия
- •1.5.Теплопроводность
- •1.6.Внутреннее трение
- •Уравнение Ньютона.
- •1.7.Уравнение переноса в общем виде.
- •Лекция 4 термодинамика
- •1.1.Понятие числа степеней свободы
- •1.2.Основные понятия термодинамики
- •Уравнение Майера
- •Показатель адиабаты
- •1.3.Основные законы термодинамики
- •1.4.Работа при термодинамических процессах.
- •Работа при изотермическом процессе.
- •Работа при изобарическом процессе.
- •Работа при адиабатическом процессе.
- •1.5.Тепловая машина. Цикл Карно.
- •Свойства энтропии.
- •Вопросы для самоконтроля.
- •Список литературы Основная
- •Лекция 5
- •Теорема Остроградского – Гаусса.
- •Принцип суперпозиции.
- •1.2.Работа электрического поля. Потенциал электрического поля.
- •Связь напряженности и потенциала.
- •Теорема Ирншоу.
- •1.3.Проводники и диэлектрики в электрическом поле.
- •Диэлектрики в электрическом поле.
- •1.4.Электрическая емкость. Конденсатор.
- •Вопросы для самоконтроля
- •Список литературы Основная
- •Лекция 6 электрический ток
- •1.1.Понятие электрического тока и условия его существования.
- •1.2.Параметры электрического тока.
- •1.3.Основные законы
- •Электрический ток в электролитах
- •Зависимость сопротивления электролитов от температуры.
- •1.5..Электрический ток в полупроводниках. Полупроводниковые приборы.
- •Полупроводниковый диод p-n переход.
- •Полупроводниковый триод
- •1.6.Электрический ток в газах.
- •Вольт-амперная характеристика газового разряда.
- •1.7. Термоэлектронная эмиссия. Электровакуумные приборы.
- •Полупроводниковый триод.
- •Вопросы для самоконтроля
- •Список литературы Основная
- •Лекция 7 Магнетизм и электромагнетизм
- •1.1.Параметры магнитного поля.
- •1.2.Основные формулы и законы.
- •Закон Ампера.
- •1.3. Действие магнитного поля на проводник с током.
- •1.4 Виды магнетиков. Гистерезис.
- •1.5. Явление электромагнитной индукции. Закон Фарадея.
- •Закон Фарадея.
- •Правило Ленца.
- •1.6.Получение переменного тока
- •1.7.Явление взаимной индукции и самоиндукции.
- •Резистор в цепи переменного тока:
- •Конденсатор в цепи переменного тока:
- •Сопротивление конденсатора в цепи переменного тока.
- •Катушка индуктивности в цепи переменного тока.
- •Зависимость индуктивного и емкостного сопротивления от частоты тока.
- •Обобщенный закон Ома
- •1.9.Резонанс в цепи переменного тока.
- •1.10.Колебательный контур
- •1.11.Электромагнитные волны
- •Вопросы для самоконтроля
- •Список литературы Основная
- •Лекция 8 Оптика
- •1.1. Природа света.
- •1.2.Геометрическая оптика.
- •Закон отражения.
- •1.3.Элементы волновой оптики Дисперсия
- •Интерференция.
- •Дифракция.
- •Условия интерференционного максимума и минимума.
- •Поляризация.
- •Основные фотометрические характеристики.
- •1.4.Фотоэффект и законы внешнего фотоэффекта
- •1.5.Люминесценция
- •Правило Стокса.
- •1.6.Световое давление
- •1.7. Излучение и поглощение света веществом.
- •1.8.Законы излучения абсолютно черного тела.
- •Вопросы для самоконтроля
- •Список литературы
- •1.2.Виды радиоактивного излучения
- •1.3.Энергия связи. Дефект массы атомного ядра.
- •1.4.Виды ядерных реакций
- •Применение ядерной энергии.
- •Вопросы для самоконтроля
- •Список литературы Основная
- •Содержание
Основные фотометрические характеристики.
Сила света измеряется отношением светового потока, создаваемого потока точечным источником света в телесном угле, к этому телесному углу
I=Ф/Ω
Световой поток
Световым потоком называется, поток световой энергии, оцениваемый по зрительному ощущению.
Телесный угол – часть пространства, ограниченный конической поверхности
Телесный
угол определяется отношением площадиS,
вырезаемой этим углом на поверхности
сферы (с центром O
в вершине телесного угла ) к квадрату
радиуса R
сферы.
Рисунок 76.
Ω=S/R2
Освещенностью поверхности называется отношение светового потока, падающего на данную поверхность, к площади этой поверхности.
E=φ/S
Яркость. Эта характеристика вводится для протяженных источников света. Яркость измеряется отношением силы света, излучаемого с площади видимой (перпендикулярной направлению наблюдения) поверхности данного источника, к площади этой поверхности.
1.4.Фотоэффект и законы внешнего фотоэффекта
Фотоэффект – явление, выбивания электронов с поверхности вещества под действием света. Бывает внешний (характерен для металлов, электроны под действием света, освобождаясь, покидают поверхность вещества); внутренний (характерен для полупроводников, электроны, освободясь от связи с атомами под действием света не покидают поверхность полупроводника, а становятся свободными, оставаясь внутри вещества).
Уравнение Эйнштейна для фотоэффекта:
Уравнение Планка для энергии фотона:
h
– постоянная
планка =
-
частота
Законы внешнего фотоэффекта.
Рисунок 77.
Принципиальная измерительная схема, с помощью которой исследовался внешний фотоэффект изображена на рисунке 77. Отрицательный полюс батареи присоединен к металлической пластинке K (катод), положительный – к вспомогательному электроду А (анод). Оба электрода помещены в сосуд, имеющий кварцевое окно (прозрачное для оптического излучения). Поскольку электрическая цепь остается разомкнутой, ток в ней отсутствует. При освещении катода К свет вырывает из него электроны (фотоэлектроны), устремляющиеся к аноду; в цепи появляется ток (фототок).
Схема дает возможность измерять силу фототока и скорость фотоэлектронов при различных значениях напряжения между катодом и анодом при различных условиях освещения катода.
Экспериментальные исследования, выполненные Столетовым, а также другими учеными, привели к установлению следующих основных законов внешнего фотоэффекта.
1. Фототок насыщения пропорционален интенсивности падающего излучения.
2. Скорость выбитых электронов не зависит от интенсивности падающего излучения, а определяется только его частотой.
3.
Фотоэффект начинается только с
определенной частоты падающего излучения,
называемой красной границей фотоэффекта.
Это минимальная частота падающего
излучения, при которой начинается
фотоэффект.
1.5.Люминесценция
Люминесценция(холодное свечение) – свечение тел при низкой температуре, так что в тепловом излучении отсутствует излучение в видимом диапазоне. Оно наблюдается после возбуждения атомов и молекул вещества. По продолжительности послесвечения (после прекращения действия внешнего возбуждения) от 10-9с до нескольких суток. Люминесценция подразделяется на флюоресценцию (кратковременное послесвечение) и фосфоресценцию (длительное), хотя резкой границы между ними нет.
Свечение при люминесценции не прекращается одновременно с вызвавшей его причиной. В зависимости от способа возбуждения различают фото-люминесценцию, рентгено-, радио-, котодо-, электро-, хемилюминесценцию.
Спектры люминесцентного излучения и их максимумы сдвинуты в сторону более длинных волн относительно спектра возбуждающего излучения (правило Стокса).
В соответствии с квантовой теорией излучения, поглотив квант энергии hυ0, атом переходит в возбужденное состояние и теряет при этом часть полученной энергии. Оставшаяся энергия излучается в виде квантаhυ
.
То есть частота люминесцентного излучения меньше частоты поглощения. Вещества, обладающие ярко выраженной способностью люминесцировать называются люминофорами. Степень преобразования поглощенной энергии ε0в энергию люминесценции ε характеризуется энергетическим выходом η=ε/ε0.
Согласно закону С.И. Вавилова
Квантовый выход возрастает пропорционально длине волны возбуждающего излучения, а затем, достигнув максимума (насыщения), резко уменьшается.
Люминесценция широко используется в технике – люминесцентные лампы, электронно-лучевые трубки, люминесцентный анализ и другие применения. Люминесцентный анализ применяется также в медицине и ветеринарии. Значительная часть органических соединений (кислоты, жиры, красители) при облучении ультрафиолетом люминесцируют. Изучение люминесцентного излучения позволяет анализировать состояние пищевых продуктов, фармакологических веществ, волокон растительного и животного происхождения. Он применяется также при диагностике кожных заболеваний. Наблюдается также сверхслабое свечение биологических объектов – метаболическая люминесценция, характерная для живых организмов.
При люминесценции атомы из возбужденного состояния в устойчивое переходят спонтанно (самопроизвольно), однако эти переходы могут быть инициированы за счет какого либо внешнего воздействия.
Вследствие вспышки импульсной лампы атомы переводятся в возбужденное состояние.
Рисунок 78.
Если один из атомов испускает фотон, летящий вдоль оси рабочего вещества (кристалла, газа, полупроводника), то он инициирует излучение других атомов и образуется лавина фотонов. Так как волны, соответствующие этим фотонам совпадают по фазе, то амплитуда излучения непрерывно возрастает. Многократно отражаясь от плоскопараллельных зеркал (правое полупрозрачное), свет усиливается и выходит наружу в виде монохроматического когерентного излучения. На рисунке 78 показано устройство квантового лазерного генератора.
Фотоны, летящие под углом к оси лазера «выходят из обращения» и не участвуют в формировании
По длительности свечения люминесценция делится на фосеро- и флюоресценцию.