
- •Министерство сельского хозяйства Российской Федерации
- •Лекция 1 электростатика
- •1.1. Электромагнитное взаимодействие. Электрический заряд. Закон Кулона.
- •Электрическое поле. Напряженность электрического поля. Принцип суперпозиции электрических полей.
- •Электрическое поле. Напряженность электрического поля. Принцип суперпозиции электрических полей.
- •Работа сил электростатического поля, потенциал. Консервативность электростатических сил, связь между е и . Потенциал точечного и распределенного заряда.
- •Связь между напряженностью и потенциалом электрического поля. Градиент потенциала. Теорема о циркуляции электрического поля.
- •Потенциалы простейших электрических полей.
- •Потенциал поля точечного заряда.
- •Вопросы для самоконтроля
- •Лекция 2 электростатика
- •2.1. Понятие о потоке вектора и его дивергенции. Теорема Остроградского-Гаусса. Теорема Гаусса для вектора е в дифференциальной и интегральной форме.
- •2.2. Электрическое поле в диэлектриках.
- •Основные теоремы электростатики в интегральной и дифференциальной форме.
- •Электроемкость проводников. Конденсаторы.
- •Вычисление емкости простых конденсаторов.
- •Энергия заряженного проводника и заряженного конденсатора.
- •Энергия электростатического поля.
- •Вопросы для самоконтроля.
- •Лекция 3 постоянный электрический ток
- •Закон Ома для однородного участка цепи. Сопротивление проводников.
- •Дифференциальная форма закона Ома.
- •Кпд источника тока.
- •3.2. Сторонние силы. Эдс источника тока. Закон Ома для неоднородного участка цепи и для замкнутой цепи.
- •Напряжение на зажимах источника тока.
- •Вопросы для самоконтроля
- •Лекция 4 магнитное поле
- •4.1. Магнитное поле. Законы Ампера и Био – Савара – Лапласа.
- •Взаимодействие проводников с током. Закон Ампера.
- •Взаимодействие двух прямолинейных проводников с током.
- •. Закон Био-Савара-Лапласа. Принцип суперпозиции магнитных полей.
- •4.2. Теорема о циркуляции. Магнитное поле движущихся зарядов. Сила Лоренца. Дифференциальная форма теоремы о циркуляции.
- •Силы, действующие на заряженную частицу в электромагнитном поле. Сила Лоренца.
- •4.3. Движение заряженной частицы в однородном постоянном магнитном поле.
- •4.4. Работа перемещения контура с током в магнитном поле. Магнитный момент.
- •Момент сил, действующих на контур с током в магнитном поле.
- •Энергия контура с током в магнитном поле.
- •Контур с током в неоднородном магнитном поле.
- •Работа, совершаемая при перемещении контура с током в магнитном поле.
- •Вопросы для самоконтроля
- •Лекция 5 электромагнитная индукция
- •5.1. Закон электромагнитной индукции Фарадея и правило Ленца. Явление самоиндукции, взаимная индукция. Индуктивность длинного соленоида. Энергия магнитного поля.
- •Явление самоиндукции. Индуктивность проводников.
- •Пример вычисления индуктивности. Индуктивность соленоида.
- •Переходные процессы в электрических цепях, содержащих индуктивность. Экстратоки замыкания и размыкания.
- •Энергия магнитного поля. Плотность энергии.
- •5.2. Электромагнитные колебания. Явление резонанса. Колебательный контур.
- •Аналогия между электрическими и механическими колебаниями.
- •5.3. Переменный ток. Получение переменного тока. Индуктивность и емкость в цепи переменного тока.
- •5.4. Магнитное поле в веществе. Классификация магнетиков. Ферромагнетизм.
- •Виды магнетиков.
- •Вопросы для самоконтроля
- •Лекция 6 основы теории максвелла для электромагнитного поля
- •6.1. Система уравнений Максвелла в дифференциальной и интегральной
- •Форме. Ток смещения.
- •Теорема о циркуляции магнитного поля.
- •Закон Фарадея:
- •Система уравнений Максвелла.
- •Энергия и поток энергии. Теорема Пойнтинга.
- •Вопросы для самоконтроля
- •Содержание
Электрическое поле. Напряженность электрического поля. Принцип суперпозиции электрических полей.
Взаимодействие электрических зарядов осуществляется через особый вид материи, порождаемой заряженными частицами - электрическое поле. Электрические заряды изменяют свойства окружающего их пространства. Проявляется это в том, что на помещенный вблизи заряженного тела другой заряд (назовем его пробным) действует сила (рис. 2). По величине этой силы можно судить об «интенсивности» поля, созданного зарядом q. Для того, чтобы сила, действующая на пробный заряд, характеризовала электрическое поле именно в данной точке пространства, пробный заряд, очевидно, должен быть точечным.
Рисунок 2
Поместив пробный заряд qпр на некотором расстоянии r от заряда q (рис. 2), мы обнаружим, что на него действует сила, величина которой зависит от величины взятого пробного заряда qпр.
Легко,
однако, видеть, что для всех пробных
зарядов отношениеF/
qпр
будет
одно и тоже и зависит лишь от величин
q
и r
, определяющих поле заряда q
в данной точке r.
Естественно, поэтому, принять это
отношение за величину, характеризующую
«интенсивность» или, как говорят,
напряженность
электрического
поля (в данном случае поля точечного
заряда):
.
Таким образом, напряженность электрического поля является его силовой характеристикой. Численно она равна силе, действующий на пробный заряд qпр = +1, помещенный в данное поле.
Напряженность
поля – вектор.
Его направление совпадает с направлением
вектора
силы,
действующей на точечный заряд, помещенный
в это поле. Следовательно, если в
электрическое поле напряженностью
поместить
точечный зарядq,
то на него будет действовать сила:
Размерность
напряженности электрического поля в
СИ:
.
Электрическое поле удобно изображать с помощью силовых линий. Силовая линия – линия, вектор касательной к которой в каждой точке совпадает с направлением вектора напряженности электрического поля в этой точке. Принято считать, что силовые линии начинаются на положительных зарядах и оканчиваются на отрицательных (или уходят на бесконечность) и нигде не прерываются.
Электрическое
поле подчиняется принципу
суперпозиции
(сложения), который можно сформулировать
следующим образом: напряженность
электрического поля, созданного в
некоторой точке пространства системой
зарядов, равна векторной сумме
напряженностей электрических полей,
созданных в этой же точке пространства
каждым из зарядов в отдельности:
.
Работа сил электростатического поля, потенциал. Консервативность электростатических сил, связь между е и . Потенциал точечного и распределенного заряда.
Как следует из закона Кулона, сила, действующая на точечный заряд q в электрическом поле, созданном другими зарядами, является центральной. Напомним, что центральной называется сила, линия действия которой направлена по радиус-вектору, соединяющему некоторую неподвижную точку О (центр поля) с любой точкой траектории. Из «Механики» известно, что все центральные силы являются потенциальными. Работа этих сил не зависит от формы пути перемещения тела, на которое они действуют, и равна нулю по любому замкнутому контуру (пути перемещения). В применении к электростатическому полю:
.
То есть, работа сил поля по перемещению заряда q из точки 1 в точку 2 равна по величине и противоположна по знаку работе по перемещению заряда из точки 2 в точку 1, независимо формы пути перемещения. Следовательно, работа сил поля по перемещению заряда может быть представлена разностью потенциальных энергий заряда в начальной и конечной точках пути перемещения:
.
Введем потенциал электростатического поля φ, задав его как отношение:
,
(размерность
в СИ:
).
Тогда работа сил поля по перемещению точечного заряда q из точки 1 в точку 2 будет:
Разность
потенциалов
называется электрическим напряжением.
Размерность напряжения, как и потенциала,
[U]
= B.
Считается,
что на бесконечности электрические
поля отсутствуют, и значит.
Это позволяет датьопределение
потенциала
как работы,
которую нужно совершить,
чтобы
переместить заряд q
= +1 из бесконечности в данную точку
пространства.
Таким образом, потенциал электрического
поля является его энергетической
характеристикой.