
- •17-27 – Витамины, 28-30 – ферменты, 32-40 – гормоны, 42-44 – дых.Цепь, 47-48 свобод.Радикалы, 50-ц.Кребса, 69-75 –днк,рнк вопросы итоговой аттестации по биохимии
- •6. Строение триглицеридов. Роль триглицеридов в метаболизме.
- •7. Строение нуклеотидов. Роль нуклеотидов в метаболизме.
- •8. Строение фосфолипидов. Роль фосфолипидов в метаболизме.
- •9. Строение и функции эйкозаноидов.
- •10. Строение и функции холестерина.
- •13. Биологическая роль макро- и микроэлементов.
- •15. Роль фосфопиридоксаля в метаболизме
- •17.Биохимическая функция витамина в12.
- •18.Биологическая роль пантотеновой кислоты(в5)
- •19.Биологическая роль рибофлавина(в2)
- •20.Биологическая роль никотинамида.
- •21. Биохимические функции тиаминпирофосфата.
- •22. Биохимическая роль витамина с.
- •23. Биологическая роль тетрагидрофолиевой кислоты (тгфк).
- •24. Биологическая роль витамина d.
- •25. Биологическая роль витамина а.
- •26. Биологическая роль витамина е.
- •27. Биологическая роль витамина к .
- •29. Строение и классификация ферментов.
- •30. Конкурентное и неконкурентное ингибирование ферментов.
- •31. Особенности биологического катализа.
- •32. Классификация гормонов. Роль гормонов в регуляции метаболизма.
- •33. Гормоны надпочечников и их биохимические функции.
- •34. Гормоны гипофиза и их биологическая роль.
- •35. Биологическая роль половых гормонов.
- •36. Биологическая роль гормонов коры надпочечников.
- •37. Биологическая роль гормонов поджелудочной железы.
- •38. Гормоны щитовидной железы. Их влияние на метаболизм.
- •41. Биохимическая роль вторичных мессенджеров в метаболизме.
- •42.Макроэргические соединения и их роль в метаболизме.
- •43. Дыхательная цепь в митохондриях.
- •44. Последовательность расположения и строение переносчиков электронов в дыхательной цепи.
- •45. Процесс окислительного фосфорилирования, его биологическая роль.
- •47. Механизмы образования свободных радикалов. Антиоксидантные системы в клетках.
- •49. Биохимические механизмы окислительного декарбоксилирования пирувата.
- •50. Механизм реакций и биологическая роль цикла Кребса.
- •53. Глюконеогенез и его биологическая роль.
- •54. Пентозофосфатный путь окисления углеводов.
- •55. Особенности углеводного обмена у жвачных животных. Пути синтеза глюкозы у жвачных животных.
- •62. Синтез триацилглицеридов и фосфолипидов.
- •63. Кетоновые тела и их роль в метаболизме.
- •64. Физико-химические свойства белков. Изоэлектрическое состояние и изоэлектрическая точка аминокислот и белков.
- •65.Биохимические механизмы переваривания белков в жкт.
- •66.Механизмы реакций трансаминирования и дезаминирования аминокислот.
- •67.Декарбоксилирование аминокислот. Биологическая роль продуктов декарбоксилирования.
- •69.Биологические механизмы окисления нуклеотидов
- •70.Строение молекулы днк
- •71. Биохимические механизмы синтеза дн
- •72. Репликация и репарация.
- •73. Строение рнк. Виды рнк. Их роль в метаболизме.
- •74. Биохимические механизмы синтеза рнк.
- •75. Биохимические механизмы синтеза белка.
20.Биологическая роль никотинамида.
Витамин РР , витамин В 5. Коферменты- НАД(никотинамидадениндинуклеотид), НАДФ(никотинамиддинуклеотидфосфат).
Используется в ОВР(цикл Кребса, дыхательный цикл, окисление глюкозы и тд).
Другое название витамин РР.
Водорастворимый витамин.
Улучшает углеводный и белковый обмены, участвует в тканевом дыхании, оказывает сосудорасширяющее действие, активизирует сокоотделение в желудке.
Никотиновая кислота – необходимый кофермент в метаболизме белка, при синтезе генетического материала, жирных кислот и холестерина. Необходима для нормального функционирования нервной системы.
21. Биохимические функции тиаминпирофосфата.
Всасываясь из кишечника, тиамин фосфорилируется и превращается в тиаминпирофосфат.
Тиаминпирофосфат (ТПФ) — активная форма тиамина - является коферментом пируватдекарбоксилазного и α-кетоглутаратдегидрогеназного комплексов, а также транскетолазы. Первые два фермента участвуют в метаболизме углеводов, транскетолаза функционирует впентозофосфатном пути, участвуя в переносе гликоальдегидного радикала между кето- и альдосахарами. ТПФ синтезируется ферментом тиаминпирофосфокиназой, главным образом в печени и в ткани мозга. Также ТПФ выступает коферментом дегидрогеназы γ-оксиглутаровой кислоты и пируватдекарбоксилазы клеток дрожжей.
При отсутствии или недостаточности тиамина развивается тяжёлое заболевание бери-бери. (дефицит В1 приводит к накоплению в крови пировиноградной кислоты, а так же её повышенной концентрации в нервной системе. Развивается острое поражение среднего мозга, полиневрит, поражения сердечно-сосудистой системы.
22. Биохимическая роль витамина с.
Витамин С (аскорбиновая кислота). Витамин С - это антиоксидант, который нужен для восстановления и роста (регенирации) тканей, нормальной работы надпочечной железы и здоровья десен. Помогает нам защититься от воздействия загрязненной окружающей среды, от инфекций, предотвращает рак, укрепляет иммунную систему. Может снизить уровень холестерина и высокое кровяное давление, предотвращает атеросклероз, нормализует проницаемость капилляров. Важен при образовании коллагена, защищает от коагуляции крови, способствует заживлению ран и выработке антистрессовых гормонов. Участвует в выработке интерферона, в регулировании окислительно- восстановительных процессов, и необходим для метаболизма фолиевой кислоты, тирозина и фениланина. Формирует и высвобождает стероидные гормоны, обладает восстановительными свойствами, работает как антиоксидант, формирует нейротрансмиттеры. Организм человека не способен сам синтезировать витамин С. Витамин С содержится в значительных количествах в продуктах растительного происхождения (плоды шиповника, капуста, лимоны, апельсины, хрен, фрукты, ягоды, хвоя). В небольших количествах витамин С есть в животных продуктах (печень, мозг, мышцы).
23. Биологическая роль тетрагидрофолиевой кислоты (тгфк).
Тетрагидрофолат — это кофермент, участвующий во многих реакциях, особенно при метаболизме аминокислот и нуклеиновых кислот. Является донором одноуглеродной группы. Получает атом углерода путем образования комплекса с формальдегидом, который образуется в других реакциях.
Недостаток тетрагидрофолата вызывает анемию.
Концентрация тетрагидрофолата снижается под действием лекарственного препарата (цитостатика) метотрексата, который используют для остановки синтезануклеотидов.