
- •17-27 – Витамины, 28-30 – ферменты, 32-40 – гормоны, 42-44 – дых.Цепь, 47-48 свобод.Радикалы, 50-ц.Кребса, 69-75 –днк,рнк вопросы итоговой аттестации по биохимии
- •6. Строение триглицеридов. Роль триглицеридов в метаболизме.
- •7. Строение нуклеотидов. Роль нуклеотидов в метаболизме.
- •8. Строение фосфолипидов. Роль фосфолипидов в метаболизме.
- •9. Строение и функции эйкозаноидов.
- •10. Строение и функции холестерина.
- •13. Биологическая роль макро- и микроэлементов.
- •15. Роль фосфопиридоксаля в метаболизме
- •17.Биохимическая функция витамина в12.
- •18.Биологическая роль пантотеновой кислоты(в5)
- •19.Биологическая роль рибофлавина(в2)
- •20.Биологическая роль никотинамида.
- •21. Биохимические функции тиаминпирофосфата.
- •22. Биохимическая роль витамина с.
- •23. Биологическая роль тетрагидрофолиевой кислоты (тгфк).
- •24. Биологическая роль витамина d.
- •25. Биологическая роль витамина а.
- •26. Биологическая роль витамина е.
- •27. Биологическая роль витамина к .
- •29. Строение и классификация ферментов.
- •30. Конкурентное и неконкурентное ингибирование ферментов.
- •31. Особенности биологического катализа.
- •32. Классификация гормонов. Роль гормонов в регуляции метаболизма.
- •33. Гормоны надпочечников и их биохимические функции.
- •34. Гормоны гипофиза и их биологическая роль.
- •35. Биологическая роль половых гормонов.
- •36. Биологическая роль гормонов коры надпочечников.
- •37. Биологическая роль гормонов поджелудочной железы.
- •38. Гормоны щитовидной железы. Их влияние на метаболизм.
- •41. Биохимическая роль вторичных мессенджеров в метаболизме.
- •42.Макроэргические соединения и их роль в метаболизме.
- •43. Дыхательная цепь в митохондриях.
- •44. Последовательность расположения и строение переносчиков электронов в дыхательной цепи.
- •45. Процесс окислительного фосфорилирования, его биологическая роль.
- •47. Механизмы образования свободных радикалов. Антиоксидантные системы в клетках.
- •49. Биохимические механизмы окислительного декарбоксилирования пирувата.
- •50. Механизм реакций и биологическая роль цикла Кребса.
- •53. Глюконеогенез и его биологическая роль.
- •54. Пентозофосфатный путь окисления углеводов.
- •55. Особенности углеводного обмена у жвачных животных. Пути синтеза глюкозы у жвачных животных.
- •62. Синтез триацилглицеридов и фосфолипидов.
- •63. Кетоновые тела и их роль в метаболизме.
- •64. Физико-химические свойства белков. Изоэлектрическое состояние и изоэлектрическая точка аминокислот и белков.
- •65.Биохимические механизмы переваривания белков в жкт.
- •66.Механизмы реакций трансаминирования и дезаминирования аминокислот.
- •67.Декарбоксилирование аминокислот. Биологическая роль продуктов декарбоксилирования.
- •69.Биологические механизмы окисления нуклеотидов
- •70.Строение молекулы днк
- •71. Биохимические механизмы синтеза дн
- •72. Репликация и репарация.
- •73. Строение рнк. Виды рнк. Их роль в метаболизме.
- •74. Биохимические механизмы синтеза рнк.
- •75. Биохимические механизмы синтеза белка.
10. Строение и функции холестерина.
Это особое воскообразное вещество, которое имеет свое строение, свойства и структурную формулу. Он относится к стероидам, потому что в его составе обнаружены циклические структуры. Структурная формула холестерина записывается так: С27Н46О. В нормальных условиях в очищенном виде он представляет собой вещество, состоящее из маленьких кристалликов. Их температура плавления около 149 °С. При дальнейшем повышении температуры они закипают (около 300°С).
Холестерин присутствует только в животных организмах, в растениях его нет. В организме человека холестерин содержится в печени, спинном и головном мозге, надпочечниках, половых железах, жировой ткани; входит в состав оболочек почти всех клеток. Много холестерина содержится в материнском молоке. Общее количество этого вещества в нашем организме составляет примерно 350 г, из которых 90% находится в тканях и 10% — в крови (в виде сложных эфиров с жирными кислотами). Из холестерина состоит свыше 8% плотного вещества мозга.
Большая часть холестерина вырабатывается самим организмом (эндогенный холестерин), гораздо меньшая поступает с пищей (экзогенный холестерин). Примерно 80% этого вещества синтезируется в печени, остальной холестерин вырабатывается в стенке тонкой кишки и некоторых других органах.
Без холестерина невозможна нормальная работа жизненно важных органов и систем нашего организма. Он входит в состав клеточных мембран, обеспечивая их прочность и регулируя их проницаемость, а также оказывая влияние на активность мембранных ферментов.
Следующая функция холестерина заключается в его участии в метаболических процессах, производстве желчных кислот, необходимых для эмульгации и абсорбции жиров в тонком кишечнике, и различных стероидных гормонов, в том числе половых. При непосредственном участии холестерина происходит выработка в организме витамина D (который играет ключевую роль в обмене кальция и фосфора), гормонов надпочечников(кортизола, кортизона, альдостерона), женских половых гормонов(эстрогенов и прогестерона), мужского полового гормона тестостерона.
Поэтому бесхолестериновые диеты вредны еще и тем, что длительное их соблюдение часто приводит к возникновению половых дисфункций (как у мужчин, так и у женщин).
Кроме того, холестерин необходим для нормальной деятельности мозга. Согласно последним научным данным, холестерин напрямую влияет на интеллектуальные способности человека, так как принимает участие в образовании нейронами головного мозга новых синапсов, обеспечивающих реактивные свойства нервной ткани.
И даже ЛПНП, «плохой» холестерин, тоже необходим нашему организму, так как он играет ведущую роль в работе иммунной системы, включая защиту от рака. Именно липиопротеиды низкой плотности способны нейтрализовать различные бактерии и токсины, попадающие в кровь. Поэтому недостаток жиров в рационе вреден точно так же, как их избыток. Питание должно быть регулярным, сбалансированным и соответствовать индивидуальным потребностям организма в зависимости от условий проживания, физической активности, индивидуальных особенностей, пола и возраста.
11. Липопротеи́ны (липопротеиды) — класс сложных белков. Так, в составе липопротеинов могут быть свободные жирные кислоты, нейтральные жиры, фосфолипиды, холестериды. Липопротеины представляют собой комплексы, состоящие из белков (аполипопротеинов; сокращенно — апо-ЛП) и липидов, связь между которыми осуществляется посредством гидрофобных и электростатических взаимодействий. Липопротеины подразделяют на свободные, или растворимые в воде (липопротеины плазмы крови, молока и др.), и нерастворимые, т. н. структурные (липопротеины мембран клетки, миелиновой оболочки нервных волокон, хлоропластов растений). Среди свободных липопротеинов (они занимают ключевое положение в транспорте и метаболизме липидов) наиболее изучены липопротеины плазмы крови, которые классифицируют по их плотности. Чем выше содержание в них липидов, тем ниже плотность липопротеинов. Различают липопротеины очень низкой плотности (ЛОНП), низкой плотности (ЛНП), высокой плотности (ЛВП) и хиломикроны. Каждая группа липопротеинов очень неоднородна по размерам частиц (наиболее крупные — хиломикроны) и содержанию в ней апо-липопротеинов. Все группы липопротеинов плазмы содержат полярные и неполярные липиды в разных соотношениях.
Вид |
Размеры |
Функция |
Липопротеины высокой плотности (ЛВП) |
8-11 нм |
Транспорт холестерина от периферийных тканей к печени |
Липопротеины низкой плотности (ЛНП) |
18-26 нм |
Транспорт холестерина, триацилглицеридов и фосфолипидов от печени к периферийным тканям |
Липопротеины промежуточной (средней) плотности ЛПП (ЛСП) |
25-35 нм |
Транспорт холестерина, триацилглицеридов и фосфолипидов от печени к периферийным тканям |
Липопротеины очень низкой плотности (ЛОНП) |
30-80 нм |
Транспорт холестерина, триацилглицеридов и фосфолипидов от печени к периферийным тканям |
Хиломикроны |
75-1200 нм |
Транспорт холестерина и жирных кислот, поступающих с пищей, из кишечника в периферические ткани и печень |
12.Желчные кислоты — монокарбоновые гидроксикислоты из класса стероидов, производные холановой кислоты С23Н39СООН. Основными типами желчных кислот, циркулирующими в организме человека, являются так называемые первичные желчные кислоты, которые первично продуцируются печенью, холевая и хенодезоксихолевая, а также вторичные, образующиеся из первичных желчных кислот в толстой кишке под действием кишечной микрофлоры: дезоксихолевая, литохолевая, аллохолевая и урсодеоксихолевая. Из вторичных кислот в кишечно-печёночной циркуляции в заметном количестве участвует только дезоксихолевая кислота, всасываемая в кровь и секретируемая затем печенью в составе желчи. Структура хендезоксихолевой кислоты. В желчи желчного пузыря человека желчные кислоты находятся в виде конъюгатов холевой, дезоксихолевой и хенодезоксихолевой кислот с глицином и таурином: гликохолевой, гликодезоксихолевой, гликохенодезоксихолевой, таурохолевой, тауродезоксихолевой и таурохенодезоксихолевой кислотой — соединениями, называемыми также парными кислотами. урсофальк (урсодеоксихолевая кислота). У разных млекопитающих наборы желчных кислот могут различаться. Желчные кислоты, хенодезоксихолевая и урсодеоксихолевая являются основой препаратов, применяющихся при лечении заболеваний желчного пузыря. В последнее время урсодеоксихолевая кислота признана эффективным средством при лечении желчных рефлюксов.
Метаболизм желчных кислот. У здорового человека при наличии желчного пузыря синтезированные в гепатоцитах первичные желчные кислоты экскретируются в желчь конъюгированными с глицином или таурином и по желчевыводящим путям поступают в желчный пузырь, где и накапливаются. В стенках желчного пузыря происходит всасывание незначительного количества желчных кислот (примерно 1,3 %). В норме основной пул желчных кислот находится в желчном пузыре и только после стимуляции пищей рефлекторно происходит сокращение желчного пузыря и желчные кислоты поступают в двенадцатиперстную кишку. Вторичные желчные кислоты (дезоксихолевая и литохолевая) образуются из первичных (холевой и хенодезоксихолевой соответственно) под воздействием анаэробных бактерий толстой кишки. После реабсорбции вторичных желчных кислот происходит их конъюгация с глицином или таурином, от чего они также становятся компонентами желчи. Урсодезоксихолевая кислота — третичная желчная кислота также образуется под действием ферментов микроорганизмов. Из кишечника желчные кислоты с током портальной крови вновь попадают в печень, которая абсорбирует из портальной крови практически все желчные кислоты (примерно 99%); совсем небольшое количество (около 1 %) попадает в периферическую кровь.