- •17-27 – Витамины, 28-30 – ферменты, 32-40 – гормоны, 42-44 – дых.Цепь, 47-48 свобод.Радикалы, 50-ц.Кребса, 69-75 –днк,рнк вопросы итоговой аттестации по биохимии
- •6. Строение триглицеридов. Роль триглицеридов в метаболизме.
- •7. Строение нуклеотидов. Роль нуклеотидов в метаболизме.
- •8. Строение фосфолипидов. Роль фосфолипидов в метаболизме.
- •9. Строение и функции эйкозаноидов.
- •10. Строение и функции холестерина.
- •13. Биологическая роль макро- и микроэлементов.
- •15. Роль фосфопиридоксаля в метаболизме
- •17.Биохимическая функция витамина в12.
- •18.Биологическая роль пантотеновой кислоты(в5)
- •19.Биологическая роль рибофлавина(в2)
- •20.Биологическая роль никотинамида.
- •21. Биохимические функции тиаминпирофосфата.
- •22. Биохимическая роль витамина с.
- •23. Биологическая роль тетрагидрофолиевой кислоты (тгфк).
- •24. Биологическая роль витамина d.
- •25. Биологическая роль витамина а.
- •26. Биологическая роль витамина е.
- •27. Биологическая роль витамина к .
- •29. Строение и классификация ферментов.
- •30. Конкурентное и неконкурентное ингибирование ферментов.
- •31. Особенности биологического катализа.
- •32. Классификация гормонов. Роль гормонов в регуляции метаболизма.
- •33. Гормоны надпочечников и их биохимические функции.
- •34. Гормоны гипофиза и их биологическая роль.
- •35. Биологическая роль половых гормонов.
- •36. Биологическая роль гормонов коры надпочечников.
- •37. Биологическая роль гормонов поджелудочной железы.
- •38. Гормоны щитовидной железы. Их влияние на метаболизм.
- •41. Биохимическая роль вторичных мессенджеров в метаболизме.
- •42.Макроэргические соединения и их роль в метаболизме.
- •43. Дыхательная цепь в митохондриях.
- •44. Последовательность расположения и строение переносчиков электронов в дыхательной цепи.
- •45. Процесс окислительного фосфорилирования, его биологическая роль.
- •47. Механизмы образования свободных радикалов. Антиоксидантные системы в клетках.
- •49. Биохимические механизмы окислительного декарбоксилирования пирувата.
- •50. Механизм реакций и биологическая роль цикла Кребса.
- •53. Глюконеогенез и его биологическая роль.
- •54. Пентозофосфатный путь окисления углеводов.
- •55. Особенности углеводного обмена у жвачных животных. Пути синтеза глюкозы у жвачных животных.
- •62. Синтез триацилглицеридов и фосфолипидов.
- •63. Кетоновые тела и их роль в метаболизме.
- •64. Физико-химические свойства белков. Изоэлектрическое состояние и изоэлектрическая точка аминокислот и белков.
- •65.Биохимические механизмы переваривания белков в жкт.
- •66.Механизмы реакций трансаминирования и дезаминирования аминокислот.
- •67.Декарбоксилирование аминокислот. Биологическая роль продуктов декарбоксилирования.
- •69.Биологические механизмы окисления нуклеотидов
- •70.Строение молекулы днк
- •71. Биохимические механизмы синтеза дн
- •72. Репликация и репарация.
- •73. Строение рнк. Виды рнк. Их роль в метаболизме.
- •74. Биохимические механизмы синтеза рнк.
- •75. Биохимические механизмы синтеза белка.
17-27 – Витамины, 28-30 – ферменты, 32-40 – гормоны, 42-44 – дых.Цепь, 47-48 свобод.Радикалы, 50-ц.Кребса, 69-75 –днк,рнк вопросы итоговой аттестации по биохимии
Классификация и строение углеводов. Функции углеводов различных классов.
Строение углеводов. все углеводы содержат 2 компонента - углерод и воду, и их элементарный состав можно выразить общей формулой Cm(H2O)n. Углеводы можно разделить на 3 основные группы в зависимости от количества составляющих их мономеров: моносахариды, олигосахариды и полисахариды.
Моносахариды - производные многоатомных спиртов, содержащие карбонильную группу. В зависимости от положения в молекуле карбонильной группы моносахариды подразделяют на альдозы и кетозы.
Альдозы содержат функциональную альдегидную группу -НС=О, тогда как кетозы содержат кетонную группу >С=О. Название моносахарида зависит от числа составляющих его углеродных атомов, например альдотриозы, кетотриозы, альдогексозы, кетогексозы и т.д.
Моносахариды по строению можно отнести к простым углеводам, так как они не гидролизуются при переваривании, в отличие от сложных, которые при гидролизе распадаются с образованием простых углеводов.
Олигосахариды содержат несколько (от двух до десяти) остатков моносахаридов, соединённых гликозидной связью. Дисахариды - наиболее распространённые олигомерные углеводы, встречающиеся в свободной форме, т.е. не связанной с другими соединениями. По химической природе дисахариды представляют собой гликозиды, которые содержат 2 моносахарида, соединённые гликозидной связью в α- или β-конфигурации. В пище содержатся в основном такие дисахариды, как сахароза, лактоза и мальтоза.
Полисахариды. Структурные различия между полисахаридами определяются:
-строением моносахаридов, составляющих цепь;
-типом гликозидных связей, соединяющих мономеры в цепи;
-последовательностью остатков моносахаридов в цепи.
В зависимости от строения остатков моносахаридов полисахариды можно разделить на гомополисахариды (все мономеры идентичны) и гетерополисахариды (мономеры различны).
В зависимости от выполняемых ими функций полисахариды можно разделить на 3 основные группы:
-резервные полисахариды, выполняющие энергетическую функцию. Эти полисахариды служат источником глюкозы, используемым организмом по мере необходимости.
-структурные полисахариды, обеспечивающие клеткам и органам механическую прочность.
-полисахариды, входящие в состав межклеточного матрикса, принимают участие в образовании тканей, а также в пролиферации и дифференцировке клеток. Полисахариды межклеточного матрикса водорастворимы и сильно гидратированы.
Энергетическая функция
Глюкоза- Служит источником энергии для клеточного дыхания.
Мальтоза- Служит источником энергии в прорастающих семенах
Сахароза- Основной продукт фотосинтеза в растениях (источник энергии).
Фруктоза- Обеспечивает энергией многие биологические процессы, протекающие в организме.
Структурная (пластическая) функция
Целлюлоза- Обеспечивает устойчивость оболочек растительных клеток.
Хитин- Обеспечивает прочность покровных структур грибов и членистоногих
Рибоза и дезоксирибоза- Являются структурными элементами нуклеиновых кислот ДНК, РНК
Защитная функция
Гепарин - Препятствует свертыванию крови в животных клетках.
Камедь и слизь- У растений образуются при повреждении тканей, выполняют защитную функцию
Запасающая функция
Лактоза- Входит в состав молока млекопитающих.
Крахмал- Образует запасные вещества в тканях растений.
Гликоген- Образует запас полисахаридов в животных клетках
Классификация аминокислот и их биохимические функции
Аминокисло́ты — органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы.
Классификация аминокислот.
1. По способности радикалов к взаимодействию с Н 2О:
- неполярные (гидрофобные) — плохо растворимые;
- полярные (гидрофильные) незаряженные — хорошо растворимые;
- отрицательно заряженные;
- положительно заряженные.
2. По биологическому и физиологическому значению:
- незаменимые — не могут синтезироваться организмом из других соединений и целиком поступают с пищей (валин, лейцин, изолейцин, треонин, метионин, лизин, фенилаланин, триптофан);
- полузаменимые — образуются в недостаточном количестве в организме, поэтому частично поступают с пищей (аргинин, тирозин, гистидин);
- заменимые — синтезируются в организме (все остальные).
3. По функциональной принадлежности:
- алифатические монокарбоновые кислоты: глицин, аланин, валин, лейцин, изолейцин;
- алифатические оксиаминокислоты: серин, треонин;
- серосодержащие: цистеин, метионин;
- диаминомонокарбоновые: лизин, аргинин;
- моноаминодикарбоновые: глутаминовая кислота, глутамин;
- ароматические: фенилаланин, тирозин;
- гетероциклические: гистидин, триптофан;
Уровни организация белков. Типы химических связей, участвующие в формировании пространственной структуры белка.
Белки́ — высокомолекулярные органические вещества, состоящие из альфа-аминокислот, соединённых в цепочку пептидной связью. 4 уровня структурной организации белков:первичная, вторичная,третичная и четвертичная структуры
1)Первичной, самой простой является полипептидная цепь, т.е. нить аминокислот, связанных между собой пептидными связями. В первичной структуре связи являются ковалентными, а следовательно прочными. 2) Вторичной структура – это когда нить закручена в виде спирали, между группами COOH, находящимися на одном витке спирали, и группами NH2 на другом витке образуются водородные связи. Водородные связи слабее ковалентных, но большое их количество обеспечивает образование достаточно прочной структуры. 3) Нить амино-кислот свертывается, образуя клубок – фибриллу, для каждого белка специфичную. Таким образом возникает третичная структура. Связи в третичной структуре возникают за счет: гидрофобных взаимодействий (сближение в водном растворе), электростатических сил (взаимодействие между положительными и отрицательными остатками аминокислот), небольшого числа ковалентных дисульфидных связей. 4) Благодаря соединению нескольких молекул белков между собой образуется четвертичная структура.
Денатурация белка и факторы, вызывающие денатурацию белка.
Денатурация белка - нарушение естественной структуры белка под действием некоторых факторов. Факторы денатурации:
1)Кислоты, щёлочи, соли (в том числе и соли тяжелых металлов).
2)Температура (при температуре 40-50 градусов по Цельсию).
3)Радиационное воздействие.
Денатурация бывает обратимой и не обратимой. Обратимая - когда не затронута первичная структура белка (полипептидная цепь). Не обратимая - когда разрушена первичная структура белка, а точнее разорвана пептидная связь между аминокислотами.
Под влиянием различных физических и химических факторов белки подвергаются свертыванию и выпадают в осадок, теряя нативные(природные) свойства. Таким образом, под денатурацией следует понимать нарушение общего плана уникальной структуры нативной молекулы белка, преимущественно ее третичной структуры, приводящее к потере характерных для нее свойств (растворимость, электрофоретическая подвижность, биологическая активность и т.д.). Большинство белков денатурирует при нагревании их растворов выше 50–60°С.
Факторы, которые вызывают денатурацию белков, можно разделить на физические и химические.
Физические факторы
1. Высокие температуры. Для разных белков характерна различная чувствительность к тепловому воздействию. Часть белков подвергается денатурации уже при 40-500С. Такие белки называют термолабильными. Другие белки денатурируют при гораздо более высоких температурах, они являются термостабильными.
2. Ультрафиолетовое облучение
3. Рентгеновское и радиоактивное облучение
4. Ультразвук
5. Механическое воздействие (например, вибрация).
Химические факторы
1. Концентрированные кислоты и щелочи. Например, трихлоруксусная кислота (органическая), азотная кислота (неорганическая).
2. Соли тяжелых металлов (например, CuSO4).
3. Органические растворители (этиловый спирт, ацетон)
4. Растительные алкалоиды.
5. Мочевина в высоких концентрациях
Строение и функции липидов.
Липи́ды — обширная группа природных органических соединений, включающая жиры и жироподобные вещества. Молекулы простых липидов состоят из спирта и жирных кислот, сложных — из спирта, высокомолекулярных жирных кислот и других компонентов. Строение липидов зависит в первую очередь от пути их биосинтеза.
Они нерастворимы в воде, но хорошо растворяются в органических растворителях: эфире, бензине, хлороформе и др.
Энергетическая (резервная) функция
Многие жиры, в первую очередь триглицериды, используются организмом как источник энергии. Почти все живые организмы запасают энергию в форме жиров. Существуют две основные причины, по которым именно эти вещества лучше всего подходят для выполнения такой функции. Во-первых, жиры содержат остатки жирных кислот, уровень окисления которых очень низкий (почти такой же как у углеводородов нефти). Поэтому полное окисление жиров до воды и углекислого газа позволяет получить более чем в два раза больше энергии, чем окисление той же массы углеводов. Во-вторых, жиры гидрофобные соединения, поэтому организм запасая энергию в такой форме, не должен нести дополнительной массы воды необходимой для гидратации, как в случае с полисахаридами, на 1 г которых приходится 2 г воды.
Функция теплоизоляции
Жир — хороший теплоизолятор, поэтому у многих теплокровных животных он откладывается в подкожной жировой ткани, уменьшая потери тепла. Особенно толстый подкожный жировой слой характерен для водных млекопитающих (китов, моржей и др.). Но в то же время у животных, обитающих в условиях жаркого климата (верблюды, тушканчики) жировые запасы откладываются на изолированных участках тела (в горбах у верблюда, в хвосте у жирнохвостых тушканчиков) в качестве резервных запасов воды, так как вода — один из продуктов окисления жиров.
Структурная функция
Фосфолипиды составляют основу биослоя клеточных мембран, холестерин — регулятор текучести мембран. Все живые клетки окружены плазматическими мембранами, основным структурным элементом которых является двойной слой липидов (липидный бислой).
Регуляторная
Некоторые липиды играют активную роль в регулировании жизнедеятельности отдельных клеток и организма в целом. В частности, к липидам относятся стероидные гормоны, секретируемые половыми железами и корой надпочечников. Эти вещества переносятся кровью по всему организму и влияют на его функционирование.
Защитная
Толстый слой жира защищает внутренние органы многих животных от повреждений при ударах .
Увеличения плавучести
Самые разные организмы — от диатомовых водорослей до акул — используют резервные запасы жира как средство снижения среднего удельного веса тела и, таким образом, увеличения плавучести. Это позволяет снизить расходы энергии на удержание в толще воды.