- •В.И. Абрамова, н.Н.Сергеев
- •Абрамова Влада Игоревна
- •Сергеев Николай Николаевич
- •Материаловедение
- •Учебное пособие
- •Историческая справка
- •1. Классификация материалов
- •2. Кристаллическое строение металлов и
- •2.1. Дефекты кристаллической решетки
- •Дефекты кристаллического строения
- •3. Кристаллизация
- •4. Полиморфные превращения
- •5. Основные свойства металлов и сплавов
- •5.1. Напряжение и деформация
- •5.1.1. Напряжение. Тензор напряжений
- •5.1.2. Деформации. Тензор деформаций
- •5.1.3. Схемы напряженного и деформированного состояния при механических испытаниях различных видов
- •5.1.4. Упругая и пластическая деформация
- •5.1.5. Механизм пластической деформации
- •5.2. Классификация механических испытаний
- •5.4. Статистическая обработка результатов механических испытаний
- •5.5. Разрушение
- •5.6. Наклеп
- •5.7. Влияние нагрева на строение и свойства деформированного металла (рекристаллизационные процессы)
- •Возврат, полигонизация и рекристаллизация
- •6. Теория сплавов
- •6.1. Механическая смесь
- •6.2. Химическое соединение
- •6.3. Твердые растворы
- •7. Диаграммы состояния
- •7.1. Общие сведения о построении диаграмм состояния
- •7.2. Типы диаграмм состояния
- •7.2.1. Диаграмма состояния для сплавов, образующих механические смеси из чистых компонентов (I рода)
- •7.2.2. Диаграмма состояния для сплавов с неограниченной растворимостью в твердом состоянии (II рода)
- •7.2.3. Диаграмма состояния для сплавов с ограниченной растворимостью в твердом состоянии (III рода)
- •7.2.4. Диаграмма состояния для сплавов, образующих химические соединения (IV рода)
- •Б) Диаграмма с неустойчивым химическим соединением
- •7.2.5. Диаграмма состояния для сплавов, испытывающих полиморфные превращения
- •7.3. Связь между свойствами сплавов и типом диаграммы
- •8. Железо и его сплавы
- •8.1. Диаграмма железо-углерод
- •8.1.1. Компоненты и фазы в системе железо - углерод
- •8.2. Стали
- •8.2.1. Влияние постоянных примесей на свойства стали
- •8.2.2. Маркировка углеродистых сталей общего назначения
- •8.2.3. Классификация и маркировка легированных сталей
- •8.2.4. Легированные конструкционные стали
- •8.2.4.1. Строительные низколегированные стали
- •8.2.4.2. Конструкционные (машиностроительные) цементируемые (нитроцементируемые) легированные стали
- •8.2.4.3. Конструкционные (машиностроительные) улучшаемые легированные стали
- •8.2.4.4. Шарикоподшипниковые стали
- •8.2.4.5. Износостойкие стали
- •8.2.4.6. Коррозионно-стойкие и жаростойкие стали и сплавы
- •8.2.5. Инструментальные материалы
- •8.2.5.1. Углеродистые и легированные инструментальные стали
- •8.2.5.3. Быстрорежущие стали
- •8.2.5.4. Твердые сплавы
- •8.2.6. Стали и сплавы с особыми физическими свойствами
- •8.3.1. Марки чугунов
- •9. Общие положения термической обработки
- •9. 1. Температура и время термической обработки
- •9.2. Классификация видов термической обработки
- •9.3. Основные виды термической обработки стали
- •9.4. Четыре основных превращения в стали
- •9.5. Образование аустенита
- •9.6. Рост аустенитного зерна
- •9.7. Распад аустенита
- •9.8. Мартенситное превращение
- •9.9. Бейнитное превращение
- •9.10. Превращения при отпуске
- •9.11. Влияние термической обработки на свойства стали
- •10. Химико-термическая обработка
- •11. Термомеханическая обработка
- •12. Цветные металлы и сплавы
- •12.1. Медь и ее сплавы
- •12.2. Алюминий и его сплавы
- •12.3. Титан и его сплавы
- •12.4. Антифрикционные сплавы
- •13. Порошковые материалы
- •13.1. Конструкционные порошковые материалы
- •13.2. Фрикционные порошковые материалы
- •13.3. Пористые фильтрующие элементы
- •14. Неметаллические материалы
- •14.1. Понятие о неметаллических материалах и классификация полимеров
- •14.2. Особенности свойств полимерных материалов
- •14.3. Пластические массы
- •14.4. Неорганические материалы
- •14.5. Древесные материалы
- •1. Характеристика микроанализа
- •2. Методы оптической микроскопии
- •Химический состав сталей, %
- •Литература
- •Содержание
2.1. Дефекты кристаллической решетки
В любом реальном кристалле всегда имеются дефекты строения. Дефекты кристаллического строения подразделяют на точечные (нульмерные), линейные (одномерные), поверхностные (двумерные), объемные (трехмерные).
Т
очечными
дефектами называются такие нарушения
периодичности кристаллической решетки,
размеры которых во всех измерениях
сопоставимы с размерами атома.
Рис.7. Схема точечных дефектов в кристалле: 1-примесный атом замещения, 2- дефект Шоттки, 3- примесный атом внедрения, 4- дивакансия, 5- дефект Френкеля (вакансия и межузельный атом), 6- примесный атом замещения.
К точечным дефектам относят вакансии (узлы в кристаллической решетке, свободные от атомов), или дефект Шотки, межузельные атомы (атомы, находящиеся вне узлов кристаллической решетки), а также примесные атомы, которые могут или замещать атомы основного металла (примеси замещения) или внедряться в свободные места решетки (поры, межузлия) аналогично межузельным атомам (примеси внедрения) (рис.7).
Линейные дефекты в кристаллах характеризуются тем, что их поперечные размеры не превышают нескольких межатомных расстояний, а длина может достигать размера кристалла. К линейным дефектам относятся дислокации – линии, вдоль и вблизи которых нарушено правильное периодическое расположение атомных плоскостей кристалла. Различают краевую и винтовую дислокации (рис.8). Краевая дислокация представляет собой границу неполной атомной плоскости (экстраплоскости). Винтовую дислокацию можно определить как сдвиг одной части кристалла относительно другой.
Поверхностные дефекты малы только в одном измерении. Они представляют собой поверхности раздела между отдельными зернами или субзернами в поликристаллическом материале, а также дефекты упаковки (локальные изменения расположения плотноупакованных плоскостей в кристалле).
К объемным дефектам относят такие, которые имеют размеры в трех измерениях: макроскопические трещины, поры и т.д.
Наличие различных дефектов кристаллической решетки объясняет несоответствие реальной и теоретической прочности металлических материалов. Реальная прочность металлов падает с увеличением числа дислокаций.


а б
Рис.8.Дислокации: а) краевая, б) винтовая
Достигнув минимального значения при некоторой плотности дислокаций, реальная прочность возрастает. Такого рода зависимость между реальной прочностью и плотностью дислокаций (и других несовершенств) схематически показана на рис.9.

Рис.9. Прочность кристаллов в зависимости от искажений решетки
Повышение реальной прочности с возрастанием плотности дислокаций объясняется тем, что при этом возрастают не только параллельные друг другу дислокации, но и дислокации в разных плоскостях и направлениях. Такие дислокации будут мешать друг другу перемещаться, а реальная прочность металла повысится.
Резюме
Все металлы и металлические сплавы – тела кристаллические, атомы (ионы) расположены в металлах закономерно в отличие от аморфных тел.
Металлы представляют собой поликристаллические тела, состоящие из большого числа мелких, различно ориентированных по отношению друг к другу кристаллов. В процессе кристаллизации они приобретают неправильную форму и называются кристаллитами, или зернами.
Между ионами и коллективизированными электронами проводимости возникают электростатические силы притяжения, которые связывают ионы. Такая связь называется металлической.
В металле атомы располагаются закономерно, образуя правильную кристаллическую решетку, что соответствует минимальной энергии взаимодействия атомов.
Наименьший объем кристалла, дающий представление об атомной структуре металла в любом объеме, получил название элементарной кристаллической ячейки.
Для однозначной ее характеристики используются величины: три ребра (a, b, c) и три угла между осями α, β, γ.
Большинство металлов образует одну из следующих высокосимметричных решеток с плотной упаковкой атомов: кубическую объемно центрированную (ОЦК), кубическую гранецентрированную (ГЦК) и гексагональную плотноупакованную (ГПУ).
Расстояния a, b, c между центрами ближайших атомов в элементарной ячейке называются периодами решетки.
Для определения положения атомных плоскостей (проходящих через атомы) в кристаллических пространственных решетках пользуются индексами h, k, l. Для определения атомных направлений пользуются индексами направлений [uvw].
Неодинаковость свойств монокристалла в разных кристаллографических направлениях называется анизотропией.
