Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
11-20.docx
Скачиваний:
16
Добавлен:
21.03.2015
Размер:
33.09 Кб
Скачать

11. Кэш-память. Принципы кэширования.

Кэш-память, кэш (cache memory, cache) - в широком смысле, любая память с быстрым доступом, где хранится часть данных с другого носителя с более медленным доступом; в узком смысле — «сверхоперативный» вид памяти, используемый для повышения скорости доступа микропроцессора к оперативной памяти.

Основная память компьютеров реализуется на относительно медленной динамической памяти (DRAM), обращение к ней приводит к простою процессора – появляются такты ожидания (wait states). Статическая память (SRAM), построенная, как и процессор, на триггерных ячейках, по своей природе способна догнать современные процессоры по быстродействию и сделать ненужными такты ожидания (или хотя бы сократить их количество). Разумным компромиссом для построения экономичных и производительных систем явился иерархический способ организации оперативной памяти. Идея заключается в сочетании основной памяти большого объема на DRAM с относительно небольшой кэш-памятью на быстродействующих микросхемах SRAM.

Кэш является дополнительным быстродействующим хранилищем копий блоков информации из основной памяти, вероятность обращения к которым в ближайшее время велика. Кэш не может хранить копию всей основной памяти, поскольку его объем во много раз меньше основной памяти. Он хранит лишь ограниченное количество блоков данных и каталог (cache directory) – список их текущего соответствия областям основной памяти. Кроме того, кэшироваться может не вся память, доступная процессору.

Кроме того, кэширование широко распространено в сетевых технологиях

12. Классификация внешних ЗУ.

ВЗУ предназначены для длительного хранения больших объемов данных после снятия питания.

Три составляющих:

1) Большие объемы данных;2) Длительное хранение информации;3) Энергонезависимость.

Классификация:

1. По физическим основам хранения информации: - Устройства на магнитных носителях; - На оптических; - Электронные устройства.

2. По конструктивному исполнению: -Дисковые устройства; -Ленточные

3. Накопители:-С прямым доступом (магнитные диски);-С последовательным доступом (магнитные ленты, оптические диски);-С произвольным доступом (ОЗУ).

Термин "постоянное запоминающее устройство" (ПЗУ) или Read-Only Memory (ROM) наиболее часто используется для обозначения микросхем, из которых можно только читать данные, но изменить их нельзя. В каждом персональном компьютере обязательно есть несколько микросхем ПЗУ. Например, после включения компьютера первой запускается программа BIOS, которая записана в микросхеме ПЗУ объемом в 1— 2 Мбайт. Быстродействие микросхем ПЗУ почти на порядок ниже, чем у микросхем оперативной памяти. В последнее время наиболее популярными для использования в ПЗУ стали микросхемы флэш-памяти, позволяющие перезаписывать информацию до 1 млн. раз.

13. Физические основы работы Flash-накопителей.

Флеш-память (англ. flash memory) — разновидность полупроводниковой технологии электрически перепрограммируемой памяти (EEPROM). Это же слово используется в электронной схемотехнике для обозначения технологически законченных решений постоянных запоминающих устройств в виде микросхем на базе этой полупроводниковой технологии. В быту это словосочетание закрепилось за широким классом твердотельных устройств хранения информации.

Благодаря компактности, дешевизне, механической прочности, большому объему, скорости работы и низкому энергопотреблению флеш-память широко используется в цифровых портативных устройствах и носителях информации.

Принцип работы полупроводниковой технологии флеш-памяти основан на изменении и регистрации электрического заряда в изолированной области (кармане) полупроводниковой структуры.

Изменение заряда («запись» и «стирание») производится приложением между затвором и истоком большого потенциала чтобы напряженность электрического поля в тонком диэлектрике между каналом транзистора и карманом оказалась достаточна для возникновения туннельного эффекта. Для усиления эффекта тунеллирования электронов в карман при записи применяется небольшое ускорение электронов путем пропускания тока через канал полевого транзистора (эффект Hot carrier injection (англ.)русск.).

Чтение выполняется полевым транзистором, для которого карман выполняет роль затвора. Потенциал плавающего затвора изменяет пороговые характеристики транзистора что и регистрируется цепями чтения.

Эта конструкция снабжается элементами которые позволяют ей работать в большом массиве таких же ячеек.

14. Физические основы работы зу на магнитных дисках.

у 3,5 дюймовой дискеты (диаметром около 85 мм) имеется по 80 концентрических дорожек с обеих сторон, на которых могут быть записаны по 9, 18 или 36 секторов размером 512 байтов каждый (что дает соответственно емкость дискеты 720 Кбайт, 1,44 Мбайт и 2,88 Мбайт). Наиболее распространенным вариантом являются дискеты емкостью 1,44 Мбайт.

Начало дорожки на дискетах отмечается специальным индексным отверстием. У старых (5-дюймовых) дискет это отверстие было сделано непосредственно в диске и его футляре, у 3,5-дюймовых - оно расположено в металлической вставке, занимающей центральную часть гибкого диска.

Кроме 3,5-дюймовых дискет, существовали 8- и 5-дюймовые дискеты различной емкости, имевшие различную плотность записи, количество дорожек, в том числе, с записью только на одной стороне диска, но в настоящее время они уже давно не используются.

Привод накопителя на гибких магнитных дисках включает в себя электромеханическую часть с блоком головок чтения/записи и электронную часть.

15. Структура hdd (сектор, кластер, дорожка…).

Накопи́тель на жёстких магни́тных ди́сках или НЖМД (англ. hard (magnetic) disk drive, HDD, HMDD), жёсткий диск, в компьютерном сленге «винче́стер» — запоминающее устройство (устройство хранения информации) произвольного доступа, основанное на принципе магнитной записи. Является основным накопителем данных в большинстве компьютеров.

В отличие от «гибкого» диска (дискеты), информация в НЖМД записывается на жёсткие (алюминиевые или стеклянные) пластины, покрытые слоем ферромагнитного материала, чаще всего двуокиси хрома — магнитные диски. В НЖМД используется одна или несколько пластин на одной оси. Считывающие головки в рабочем режиме не касаются поверхности пластин благодаря прослойке набегающего потока воздуха, образующейся у поверхности при быстром вращении. Расстояние между головкой и диском составляет несколько нанометров (в современных дисках около 10 нм[1]), а отсутствие механического контакта обеспечивает долгий срок службы устройства. При отсутствии вращения дисков головки находятся у шпинделя или за пределами диска в безопасной зоне, где исключён их нештатный контакт с поверхностью дисков.

Кластер (англ. cluster) — в некоторых типах файловых систем логическая единица хранения данных в таблице размещения файлов, объединяющая группу секторов. Например, на дисках с размером секторов в 512 байт, 512-байтный кластер содержит один сектор, тогда как 4-килобайтный кластер содержит восемь секторов.

Как правило, это наименьшее место на диске, которое может быть выделено для хранения файла.

Сектора:Любой жёсткий диск можно представить как огромный «чистый лист», на который можно записывать данные и откуда потом их можно считать. Чтобы ориентироваться на диске, всё его пространство разбивают на небольшие «клеточки» — сектора. Сектор — это минимальная единица хранения данных на диске, обычно его размер составляет 512 байт. Все сектора на диске нумеруются: каждый из n секторов получает номер от 0 до n–1. Благодаря этому любая информация, записанная на диск, получает точный адрес — номера соответствующих секторов. Так что диск ещё можно представить как очень длинную строчку (ленточку) из секторов. Можете посчитать, сколько секторов на вaшем диске размером в N гигабайт.

Разделы:Представлять жёсткий диск как единый «лист» не всегда бывает удобно: иногда полезно «разрезать» его на несколько независимых листов, на каждом из которых можно писать и стирать что угодно, не опасаясь повредить написанное на других листах. Логичнее всего записывать раздельно данные большей и меньшей важности или просто относящиеся к разным вещам.

Конечно, над жёстким диском следует производить не физическое, а логическое разрезание, для этого вводится понятие раздел (partition). Вся последовательность (очень длинная ленточка) секторов разрезается на несколько частей, каждая часть становится отдельным разделом. Фактически, нам не придётся ничего разрезать (да и вряд ли бы это удалось), достаточно объявить, после каких секторов на диске находятся границы разделов.