Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекц_курс полн_.doc
Скачиваний:
493
Добавлен:
20.03.2015
Размер:
2.99 Mб
Скачать

2. Будова мікробної клітини.

2.1. Клітинна стінка мікроорганізмів та її поверхневі структури.

Клітинна стінка є одним з найважливіших структурних елементів. її основна функція полягає в захисті вмісту клітини від дії зовнішніх факторів і збереженні характерної для організ­му форми. На частку клітинної стінки припадає від 10 до 50 % маси клітини. Товщина клітинної стінки у бактерій досягає 10-80 нм. При старінні організму клітинна стінка потовщується. Поверхневі структури клітинної стінки визначають контакт клі­тини з зовнішнім середовищем.

Поверхневі структури клітинної стінки бактерій.

Джгутики і рухливість. За здатністю переміщуватися всі бактерії поділяються на рухливі та нерухливі. У більшості бак­терій здатність рухатися зумовлена наявністю джгутиків. Руха­тися без джгутиків можуть ковзні бактерії (до них належать міксобактерії, ціанобактерії) та спірохети.

Розміщення джгутиків у рухливих еубактерій є ознакою, характерною для певних груп, тому вона має таксономічне зна­чення. У паличкоподібних бактерій джгутики можуть бути роз­міщені полярно або латерально (моно- і біполярне розміщен­ня) (рис.2.2). Серед бактерій з монополярним джгутикуванням лише деякі мають один, але товстий джгутик (монотрихи) (Vibrio). Більшість бактерій є політрихами. Монополярне-політрихальне розміщення джгутиків називається також лофотрихальним (Pseudomonas, Chromatium), а біполярне-політрихальне — амфітрихальниш {Spirillum). При перитрихальному розміщенні (ентеробактерії, бацили) джгутики розміщуються по боках клі­тини або по всій поверхні Джгутики являють собою спірально закручені нитки. У різ­них бактерій вони розрізняються за товщиною (12-18 нм), дов­жиною (до 20 мкм), а також за довжиною та амплітудою витка. Нитки джгутиків складаються із специфічного білка флагеліну. Флагелін має молекулярну масу до 40 000.

За функціями флагелін часто порівнюють з міозином м'язо­вих тканин (скорочувальним білком), який забезпечує рух. Але на відміну від більшості скорочувальних білків, функція яких пов'язана з гідролізом АТФ (тобто для забезпечення руху вико­ристовується енергія гідролізу АТФ), базальне тіло повертаєть­ся навколо своєї осі за рахунок енергії, що генерується протон-рушійною силою. Джгутик складається з трьох частин: спіраль­ної нитки, "крюка" поблизу поверхні клітини і базального тіль­ця. За допомогою базального тільця джгутик закріплюється в плазматичній мембрані та клітинній стінці.

Рис.2.2. Основні типи джгутикування та типи руху бактерій

Фімбрії та пілі. Поверхня деяких бактерій покрита вели­кою кількістю (від 10 до кількох тисяч) довгих тонких прямих ниток завтовшки 3-25 нм та завдовжки до 12 мкм, які називаються фімбріями. Фімбрії зустрічаються у бактерій, які мають і не мають джгутиків. Одна з перших робіт із вивчення хімічного складу фімбрій (у бактерій Escherichia соlї) була здійснена у I960 р. А. Брінтоном. Експерименти показали, що до складу фімбрій входять лектини — вуглеводзв'язувальні білки. Залежно від вуглеводної специфічності лектинів існує кілька типів фімбрій. Так, лектини фімбрій першого типу є манозоспецифічними, G-фімбрій — специфічними до N-ацетилглюкозаміну. В аміно­кислотному складі фімбрій першого типу переважають дикарбо-нові та аліфатичні амінокислоти, у той час як сірковмісні аміно­кислоти присутні у слідових кількостях. У складі фімбріальних лектинів виявлено до 40-50 % гідрофобних амінокислот (пролін, аланін, валін, лейцин, ізолейцин, фенілаланін). Незважаючи на те що фімбрії першого типу утворюються великою кількістю ентеробактерій, амінокислотний склад цих білків встановлений тільки для деяких штамів. Молекулярна маса лектинів, з яких склада­ються фімбрії, становить близько 16 000-25 000.

Крім фімбрій, клітини багатьох бактерій містять статеві пілі (F-пілі). їх не більше однієї-двох на клітину. Пілі мають вигляд порожніх всередині білкових трубочок завдовжки від 0,5 до 10 мкм. За допомогою статевих пілей чоловіча клітина при­кріплюється до жіночої, утворюючи кон'югаційний тунель, по яко­му відбувається передача ДНК від донора до реципієнта.

Таксиси. Таксиси (від грец. taxis — розміщення) бувають позитивними або негативними, залежно від руху бактерії до фак­тора чи від нього. Є кілька типів таксисів.

Хемотаксис — рух, який зумовлюється хімічними речо­винами. За здатністю індукувати (тобто викликати, зумовлю­вати) позитивний чи негативний хемотаксис розрізняють дві групи речовин: атрактанти — речовини, що зумовлюють скуп­чення клітин у ділянці вищої концентрації сполуки; репелен­ти — речовини, що зумовлюють скупчення клітин у ділянці найнижчої концентрації. Слід зазначити, що не всі сполуки, які використовуються мікроорганізмами як поживні речови­ни, є атрактантами.

Аеротаксис — рух бактерій до (від) молекулярного кис­ню. У рухливих бактерій тип метаболізму (аеробний чи анаероб­ний) можна визначити за аеротаксичним рухом і скупченням клітин на певних відстанях від накривного скла. При цьому стро­го анаеробні бактерії будуть розміщуватися в центрі скла, аероби — біля його країв чи біля бульбашок повітря, факультативні анаероби — між аеробами та анаеробами.

Фототаксис — рух бактерій, зумовлений світловою енер­гією. Так, фототрофні бактерії, яким для одержання енергії необ­хідне світло, в результаті фототаксису скупчуються в освітле­ному місці. Якщо витримати в темноті препарат, у якому сус­пензія клітин Chromatlum рівномірно розподілена під накрив­ним склом, а потім спрямувати на нього промінь світла, то бак­терії накопичаться в ділянці світлової плями.

Магнітотаксис — рух бактерій за силовими лініями маг­нітного поля Землі або магніту, зумовлений наявністю в спеціаль­них гранулах магнітосомах великої кількості заліза (до 0,4 % сухої речовини) у вигляді феромагнітного окису. Магнітосоми розміщені біля місць прикріплення джгутиків.

Термотаксис — рух бактерій, зумовлений джерелом тепла.

Віскозитаксис — рух бактерій у напрямку збільшення чи зниження в'язкості розчину. Наприклад, для спірохет-паразитів людини й тварин, які переміщуються до поверхні слизових оболонок, ця властивість має пристосувальний характер. Меха­нізм цього процесу поки що не встановлений.

Капсула та слизовий шар. Капсула розміщена поверх клі­тинної стінки. її можна побачити під світловим мікроскопом, якщо обробити препарат такими барвниками, як нігрозин, конго червоний і китайська туш, які в капсулу не проникають. При цьому маємо як би негативне контрастування: світла кап­сула виділяється на темному фоні.

Розрізняють мікрокапсули завтовшки 0,2 мкм. Мікрокапсули невидимі у світловому мікроскопі, їх можна виявити тіль­ки імунологічно (за набуханням при змішуванні із специфічни­ми антитілами). Макрокапсула завтовшки більш як 0,2 мкм доб­ре видима у світловому мікроскопі. Слизовий шар за товщиною в багато разів перевищує розміри клітини. Являє собою гідратовану в'язку масу, що накопичується на поверхні клітини.

Капсулу легко відокремити від клітини механічно, наприк­лад, центрифугуванням або вилученням у вигляді водних, буфер­них чи слабколужних розчинів.

За хімічним складом капсули поділяються на:

капсули полісахаридної природи, що складаються з гомо-полісахаридів (побудовані з одного й того самого моносахариду, наприклад, у Leuconostoc mesenteroides — з глюкози, у бакте-

рій роду Klebslella — з галактози); гетерополісахаридів (побу­довані з різних моносахаридних залишків, наприклад, у Pseudomonas aeruginosa — із залишків глюкози, галактози, манози, рамнози, глюкуронової кислоти);

капсули, що складаються з поліпептидів і полісахари­дів, наприклад, у Bacillus megaterium.

Капсулу можна розглядати як пристосувальне утворення у сапрофітних і патогенних бактерій. Утворення капсули сти­мулюється присутністю живої тканини для патогенних мікро­бів (паличка сибірки), наявністю вуглеводів і низькою темпера­турою (тифозна паличка), наявністю сахарози (азотобактер). Полісахариди капсули деяких бактерій є антигенами, вони здат­ні також сприяти вірулентності бактерій (так, капсульні шта­ми пневмококів спричиняють пневмонію у білих мишей, а декапсульовані втрачають цю здатність).

Капсула утримується на поверхні клітинної стінки за раху­нок як іонних, так і ковалентних зв'язків.

Полісахариди, що утворюють капсулу, належать до екзополісахаридів (ЕПС). У біотехнології мікробних полісахаридів їх називають капсульними, а полісахариди, що виділяються в культуральну рідину, — екзополісахаридами.

Здатність до синтезу екзополісахаридів притаманна бага­тьом мікроорганізмам — представникам різних фізіологічних і таксономічних груп. Синтезуються ЕПС грибами (Aureobasid-ит pullulans — полісахарид пулулан, Sclerotium rolfsii — склероглюкан), дріжджами (Cryptococcus laurentii, Hansenula), бак­теріями. Серед бактеріальних продуцентів ЕПС є фітопатогенні бактерії (Xanthomonas campestris, Pseudomonas, Erwinia), азотфіксувальні (Azotobacter beijerinckia), метилотрофні (Methylocystis parvus, Methylomonas mucosa). Серед ЕПС, як і серед капсуль­них полісахаридів, є гомо- та гетерополісахариди. Розрізняють також нейтральні ЕПС (складаються тільки з залишків моно­сахаридів), кислі БПС (містять залишки уронових, піровиноград­ної та інших кислот), лужні ЕПС (містять залишки аміноцукрів).

Будова і хімічний склад клітинних стінок прокаріот.

Хімічний склад клітинних стінок мікроорганізмів спочат­ку привертав увагу дослідників у галузі систематики. Основою тому були дані про якісні відмінності у складі клітинних стінок між еукаріотними та прокаріотними мікроорганізмами, а також серед прокаріотів — між грампозитивними та грамнегативними бактеріями.

Фарбування за Грамом. Диференційоване фарбування бактерій генціанвіолетом було запропоновано у 1884 р. датськиі фармакологом Г.Х. Грамом. У мікробіології забарвлення за Грамом є важливою таксономічною ознакою, з якою корелюють інши властивості бактерій. Суть методу полягає в тому, що при фарбуванні бактерій генціанвіолетом (кристалвіолетом, метилвіо летом) фарба з йодом утворюють сполуку, що утримується клітинами при обробці їх спиртом. Такі бактерії забарвлені в синьофіолетовий колір і їх називають грампозитивними.

Бактерії, які знебарвлюються при обробці спиртом, називаються грамнегативними. їх потім дофарбовують контрастною фарбою (фуксином).

У 1978 р. Н.Е. Гіббонс та Р.Г.Е. Муррей запропонували грамнегативні істинні бактерії (еубактерії) виділити у відді Грацилікутних (Gracilicutes), а грампозитивні — у відділ Фірмікутних (Firmicutes). Але терміни "фірмікутні", "грацилікутні" бактерії не мають широкого використання в мікробіології.

Пептидоглікан (глікопептид, мукопептид, муреїн). Основним компонентом клітинної стінки бактерій є пептидогліка (глікопептид, мукопептид, муреїн). Пептидоглікан виявлен тільки у прокаріот. Винятком є еубактерії, що не мають клітинної стінки (мікоплазми, L-форми), та архебактерії — деякі метанеутворювальні та галофіли (Halobacterium, Halococcus). Для гало-

фільних бактерій наявність міцної клітинної стінки не обов'яз­кова, оскільки вміст їх клітин є ізоосмотичним з навколишнім середовищем.

Специфічний гетерололімер пептидоглікан складається: із залишків N -ацетилглюкозаміну та N-ацетилмурамової кислоти, з'єднаних між собою в-1,4-глікозидними зв'язками. N-ацетилглюкозамін є похідною сполукою глюкози, в якій гідро­ксильна група при другому атомі вуглецю заміщена на аміно­групу. N-ацетилмурамова кислота — це ефір N-ацетилглюкозаміну та .D-молочної кислоти {рис. 2.3);

із діамінокислот, з яких найчастіше зустрічаються мезо-діамінопімелінова кислота, LL-діамінопімелінова кислота, лізин, орнітин. Наявність таких амінокислот з двома аміногрупами має принципове значення для просторової організації пептидоглікану. Вони забезпечують утворення двох пептидних зв'язків між пептидними угрупованнями в молекулі;

Рис.2.3. Основні складові гетерополімеру пептидоглікану

з інших амінокислот (D- та L-аланін, D-глутамінова кис­лота, L-серин, гліцин).

Фрагмент пептидоглікану показано на рис.2.4.. За допомо­гою пептидних місточків гетерополімерні ланцюги зв'язані між собою в мішкоподібну гігантську молекулу — муреїновий мішок (муреїнова сітка).

Муреїновий мішок виконує функцію опорного каркаса клі­тинної стінки. За будовою цього каркаса, а також за вмістом інших речовин у клітинній стінці грампозитивні бактерії відріз­няються від грамнегативних. . Клітинна стінка грампозитивних бактерій. У грампозитивних бактерій частка муреїнової сітки становить 30-70 % сухої маси клітинної стінки (завтовшки 40 шарів). Замість мезо-діамінопімелінової кислоти часто міститься LL-діамінопімелінова кислота або лізин. У клітинній стінці грампозитивних бак­терій полісахариди, якщо вони є, зв'язані між собою ковалент­но. Вміст ліпідів і білків невисокий. У білках клітинних стінок грампозитивних бактерій набір амінокислот менший (4-12), ніж у грамнегативних (містяться практично всі амінокислоти, з яких складаються білки).

Рис. 2.4. Структура пептидоглікану Escherichia coli:

N-АцМур — N-ацетилмурамова кислота; N-АцГлю — N-ацетилглюкозамін; Ала — аланін; Глу — глутамінова кислота; m-Дпм — мезо-діамінопімелінова кислота; ▼ — лізоцим

Характерною особливістю грампозитивних бактерій є наяв­ність у клітинній стінці тейхоєвих кислот. Тейхоєві кислоти — це ланцюги, які складаються з 8-50 залишків гліцерину чи рибітолу, зв'язаних між собою фосфатними місточками. У молекулі тейхоєвої кислоти поліол може містити моносахариди як заміс­ники. Деякі з тейхоєвих кислот містять еритритол чи маніт. Припускається, що тейхоєві кислоти зв'язані з муреїном через фосфат за типом аміду. У складі тейхоєвих кислот деяких грам­позитивних бактерій містяться жирні кислоти, які утворюють ефірні зв'язки з гліцериновими залишками. їх називають л і п о ­т е й х о є в и м и кислотами. Тейхоєві кислоти містяться в клітинах у значних кількостях. У деяких бактерій вони ста­новлять більше половини маси клітинної стінки.

Функції тейхоєвих кислот:

фосфатні групи тейхоєвих кислот є місцем зв'язування катіо­нів магнію, необхідного для багатьох ензиматичних і фізико-хімічних процесів, що проходять на цитоплазматичній мембрані;

тейхоєві кислоти беруть участь у регуляції активності авто-літичних ферментів;

було показано, що цукрові компоненти тейхоєвих кислот є від­повідальними за зв'язування фатів з клітинною стінкою. Якщо тейхоєва кислота з будь-яких причин втрачає глікозильні замісники, то бактеріальна клітина стає фагорезистентною (фагостійкою);

ліпотейхоєві кислоти беруть участь в імунологічних реакціях.

Клітинна стінка грамнегативних бактерій. У грамнегатив­них бактерій муреїнова сітка є одношаровою і становить мен­ше 10 % сухої маси клітинної стінки. Муреїн містить тільки .мезо-діамінопімелінову кислоту і не містить лізину. У складі клітинних стінок грамнегативних бактерій тейхоєві кислоти не виявлено.

У всіх грамнегативних бактерій зверху одношарового чи най­більше двошарового муреїнового мішка розміщується зовнішній шар клітинної стінки. Це так звана зовнішня мембрана, що скла­дається з білків, фосфоліпідів і ліпополісахаридів (ЛПС) (рис.2.5).

З муреїном, очевидно, ковалентно через діамінопімелінову кислоту зв'язані ліпопротеїни. Вони орієнтовані своїми ліпофільними кінцями назовні і таким чином закріплені в ліпофільному подвійному шарі (завдяки гідрофобній взаємодії). У цьо­му ж шарі містяться фосфоліпіди та гідрофобні кінці ліпополі­сахаридів. Гідрофільні кінці ЛПС орієнтовані назовні.

Ліпополісахариди — складні молекули з молекулярною масою більш як 10 000. Вони складаються з трьох частин ліпі­ду А, ядра {кор, серцевинна зона) та О-специфічного бокового ланцюга. ЛПС Salmonella typhimurium та інших ентеробактерій досліджені досить повно.

Рис. 2.5. Модель будови клітинної стінки грамнегативних бактерій:

Праворуч — ліпополісахаридна молекула; Глю — глюкоза; Глю-N — глюко-

замін; NA=N-AцГлю — N-ацетилглкжозамін; Гал — галактоза; Геп — гепто-

за; КДО — 2-кето-З-дезоксиоктонова кислота; М — муреїн; ЗМ — зовнішня

мембрана; ПМ — плазматична мембрана;ПП — периплазматичний простір

Ліпід А складається з глюкозаміндисахариду, до гідроксиль­них груп якого ефірними зв'язками приєднані жирні кислоти (С12, С14, С16), Ця частина молекули має гідрофобні властивості. Далі міститься R-серцевинна зона — трисахарид, що склада­ється з трьох залишків 2-кето-З-дезоксиоктонової кислоти (КДО) і який зв 'язаний також з фосфоетаноламіном. Далі йдуть дві моле­кули гептози і зовнішня серцевинна зона. Остання складаєть­ся з розгалуженого ланцюга, що містить глюкозу, галактозу і N-ацетилглюкозамін. Ця базова структура є однаковою у всіх сальмонел. До серцевинної зони прилягає О-специфічний боко­вий ланцюг. Це довгі ланцюги, що складаються з повторюва­них олігосахаридів, які можуть містити галактозу, манозу, рам­нозу, абеквозу, фукозу та інші моносахариди у послідовності, що варіює від штаму до штаму.

ЛПС набули великого значення в бактеріологічній діагнос­тиці і розпізнаванні епідемій. Виявилось, що збудники різних захворювань відрізняються один від одного О-специфічними боковими ланцюгами. Незначні відмінності в їх складі можуть бути виявлені за допомогою імунологічних методів. За серологіч­ними реакціями у роді Salmonella вдалося виділити понад тися­чу видів і штамів. Є так звані місцеві раси сальмонел, які мож­на ідентифікувати за імунохімічними особливостями. Це часто дає можливість встановити, де відбулося зараження хворого чи звідки почала поширюватися епідемія. Наприклад, можна встановити, де хворий отримав інфекцію — у південно-амери­канському чи східно-азіатському регіоні.

Функції зовнішньої мембрани. Зовнішня мембрана грамнегативних бактерій виконує не тільки механічні, а й важливі фізіо­логічні функції. В її подвійний ліпідний шар, що складається з ліпі­ду А, полісахаридів і фосфоліпідів вбудовані білки, які пронизу­ють цей шар наскрізь. Ці трансмембранні білки називаються п о р и н а м и. Порини пропускають через мембрану гідрофільні низько­молекулярні речовини (до молекулярної маси близько 6 000).

Зовнішня мембрана прилягає до муреїнового шару і зв'яза­на з ним ліпопротеїнами. Очевидно, муреїновий шар є проник­ним для різних сполук. Проміжок між муреїном і плазматичною мембраною називають л ер ця л а з мати ч ним простором. У ньому містяться ферменти, в тому числі і деполімерази (протеїнази, нуклеази), периферійні білки і так звані зв'язувальні біл­ки. Останні беруть участь у перенесенні деяких субстратів у цитоплазму і є рецепторами хемотаксичних сигналів. Периплазматичний простір, очевидно, відіграє певну роль в осморегуляції.

Дія лізоциму та пеніциліну. Структура клітинної стінки та муреїну була встановлена у зв'язку з вивченням дії лізоциму та пеніциліну на бактерії. Відкритий англійським мікробіоло­гом А. Флемінгом у 1922 р. лізоцим є бактерицидним фермен­том, що міститься в яєчному білку, носовому слизі, в сльозовій рідині. Лізоцим виділили також з бактерій {Е. coli, Streptomyces) і бактеріофагів. При дії лізоциму на суспензію грампозитивних бактерій спостерігали швидке її просвітлення. Так, Mіcrococcus luteus лізується (розчиняється) вже у концентрації 1 мкг лізо­циму на 1 мл. Для лізису клітин Bacillus megaterlum необхід­ною є концентрація 50 мкг/мл, а грамнегативні бактерії розчи­няються тільки за наявності в суспензії ЕДТА.

Лізоцим розриває в муреїні глікозидний зв'язок між пер­шим вуглецевим атомом N-ацетилмурамової кислоти і четвер­тим вуглецевим атомом N-ацетилглюкозаміну . При цьому полісахаридні ланцюги розщеплюються до дисахаридних фрагментів. Отже, лізоцим є N-ацетилмурамідазою.

Слід зазначити, що повному руйнуванню бактеріальних клітин можна запобігти, здійснюючи лізис в ізотонічному чи слабкогіпертонічному розчині (0,1-0,2 М сахарози). У цих умо­вах під дією лізоциму з клітин утворюються надзвичайно чут­ливі до осмотичних умов округлі протопласти. У гіпертоніч­них та ізотонічних розчинах протопласти стабільні, у гіпотоніч­них — лопаються. Протопластами слід називати тільки такі округлі клітини, в яких немає ніяких залишків клітинної стін­ки, тобто не можна виявити ні мурамової кислоти, ні специфіч­ної для клітинної стінки діамінопімелінової кислоти. Лізис клі­тинної стінки не супроводжується порушеннями метаболізму.

Крім лізоциму, є ряд інших ферментів, що руйнують муреїновий каркас, наприклад, муроендопептидази.

Антибіотик пеніцилін діє переважно на грампозитивні бак­терії (пневмококи та стафілококи), а також на деякі грамнега­тивні (гонококи, менінгококи, ентеробактерії), вбиваючи їх. Але бактерицидній дії піддаються тільки клітини, які ростуть. Клі­тини, що перебувають у стані спокою, залишаються живими. Найцікавіший феномен, який спостерігається під дією пеніци­ліну, — це поява так званих L - ф о р м, які утворюються з нормаль­них бактеріальних клітин у результаті незбалансованого росту в довжину та ширину. При цьому вихідні палички збільшують­ся в об'ємі в багато разів. Якщо діяти пеніциліном на клітини, що ростуть, у гіпотонічному розчині вони лопаються, В ізо- та гіпертонічних розчинах палички перетворюються на шароподібні утворення, які називаються L-формами або сферопластами. Від протопластів вони відрізняються тим, що збе­рігають залишки клітинної стінки. Пеніцилін порушує процес утворення клітинної стінки.