Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Молекулярная биология клетки. Том 1

.pdf
Скачиваний:
462
Добавлен:
20.03.2015
Размер:
26.84 Mб
Скачать

131

белковых молекул, называются информационными (матричными) РНК (мРНК); другие РНК-транскрипты используются как транспортные РНК (тРНК) (см. разд. 3.2.10), образуют компоненты рибосом (рибосомные, рРНК, см. разд. 3.2.10) или более мелкие нуклеопротеиновые частицы. Количество молекул РНК, копируемых с определенного участка ДНК, контролируется регуляторними белками, которые связываются со специфическими участками ДНК, закрывая кодирующие последовательности гена (см. разд. 10.2.1). В любой клетке в любой момент времени некоторые гены используются для синтеза РНК в очень больших количествах, тогда как другие гены не транскрибируются совсем. Для некоторых активных генов в каждом клеточном поколении один и тот же участок ДНК может транскрибироваться тысячи раз. Поскольку каждая молекула РНК может транслироваться во многие тысячи копий, то информация, содержащаяся в маленьком участке ДНК, может направлять синтез миллионов копий специфического белка. Например, белок фиброин - основной компонент шелка: один ген фиброина в каждой клетке шелкоотделительной железы производит 104 копий мРНК, на каждой из которых синтезируется 105 молекул фиброина, что за 4 сут дает 109 молекул фиброина на клетку.

3.2.7. Молекулы РНК эукариотических клеток подвергаются сплайсингу, чтобы убрать интронные последовательности [15]

В бактериальных клетках большинство белков кодируется одной непрерывной последовательностью ДНК, которая копируется без изменения с образованием молекулы мРНК. В 1977 г. молекулярные биологи были изумлены, обнаружив, что у большинства эукариотических генов кодирующие последовательности (названные экзонами), чередуются с некодирующими последовательностями (названными нитронами). Для производства белка весь ген, включая и интроны, и экзоны, транскрибируется в очень длинную молекулу РНК (первичный транскрипт). Перед тем как эта молекула РНК покинет ядро, комплекс ферментов, осуществляющих процессинг РНК, удаляет у нее все последовательности интронов, делая молекулу РНК значительно короче. После завершения этой стадии процессинга РНК, которая носит название сплайсинга РНК, молекула РНК выходит в цитоплазму уже как мРНК и направляет синтез определенного белка (см. рис. 3-13).

Этот кажущийся расточительным способ передачи информации развился у эукариот, видимо, потому, что он делает синтез белка значительно более гибким. Например, первичные транскрипты РНК одного и того же гена могут подвергаться сплайсингу разными способами, давая разные мРНК в зависимости от клеточного типа или стадии развития. Это позволяет производить разные белки под контролем одного и того же гена. Более того, поскольку присутствие многочисленных нитронов облегчает генетическую рекомбинацию между экзонами, такой способ устройства гена, видимо, имел огромное значение в ранней эволюционной истории, ускоряя процесс, посредством которого организмы синтезировали новые белки из частей ранее существовавших, вместо того, чтобы вырабатывать целиком новые последовательности.

132

Рис. 3-14. Три рамки считывания, возможные при синтезе белка. Последовательность нуклеотидов РНК считывается по порядку от 5'- к 3'-концу по три нуклеотида и таким образом переводится в последовательность аминокислот. Поэтому одна и та же последовательность РНК может в принципе

взависимости от «рамки считывания» кодировать три совершенно различные последовательности аминокислот.

3.2.8.Последовательность мРНК «считывается» группами по три нуклеотида и переводится в последовательность аминокислот [16]

Правила перевода последовательности полинуклеотидов в аминокислотную последовательность белков - так называемый генетический код - были расшифрованы в начале 60-х годов. Оказалось, что последовательность нуклеотидов молекулы мРНК - посредника при передаче информации от ДНК к белку - считывается по порядку группами из трех нуклеотидов. Каждый триплет нуклеотидов, или кодон, определяет включение одной аминокислоты, и в принципе каждая молекула мРНК может быть прочитана в любой из трех рамок считывания в зависимости от того, с какого именно нуклеотида молекулы начался процесс декодирования (рис. 3-14). Почти всегда лишь одна из трех рамок считывания дает функциональный белок. Так как, за исключением начала и конца кодирующего участка, информация записана в РНК без знаков препинания, рамка считывания устанавливается при инициации трансляции и сохраняется на протяжении всего процесса.

Поскольку РНК является линейным полимером, состоящим из нуклеотидов четырех типов, то всего имеется 43 = 64 возможных триплета (напомним, что важное значение имеет последовательность нуклеотидов триплета). Учитывая, что в белках находят всего 20 различных аминокислот, можно сделать вывод, что большинство аминокислот должно кодироваться несколькими триплетами; другими словами генетический код вырожден. Генетический код, представленный на рис. 3-15, оказался чрезвычайно консервативным в эволюции: за небольшими исключениями он остается одинаковым у таких разных организмов, как бактерии, растения и человек.

3.2.9. Соответствие между аминокислотами и триплетами нуклеотидов устанавливают молекулы тРНК [17]

Кодоны мРНК узнают соответствующие аминокислоты не прямым путем - не так, как фермент узнает субстрат. При трансляции

использу-

Рис. 3-15. Генетический код. При синтезе белка триплеты нуклеотидов РНК (кодоны) транслируются в соответствующие им аминокислоты. Например, кодоны GUG и GAG направляют в белок соответственно валин и глутаминовую кислоту. Обратите внимание, что кодоны с U или С во втором положении обычно кодируют более гидрофобные аминокислоты (схема 2-5).

133

Рис. 3-16. Фенилаланиновая тРНК дрожжей. А. Молекула изображена в форме «кленового листа», чтобы показать комплементарное спаривание (выделено серым) внутри спиральных участков молекулы. Б. Схематическое изображение реальной формы молекулы, основанное на данных рентгеноструктурного анализа. Комплементарное спаривание обозначено серыми линиями. Нуклеотиды, участвующие в некомплементарном спаривании оснований, удерживающем вместе сегменты цепи, выделены цветом, а соответствующие пары оснований пронумерованы и связаны цветными пунктирными линиями, которые соответствуют цветным линиям в А. В. Необычное взаимодействие между парами оснований. Одно

основание образует водородные связи с двумя другими; несколько таких «троек оснований» помогают свертывать эту молекулу тРНК.

ются «адапторы» - молекулы, узнающие и аминокислоту, и триплет нуклеотидных оснований. Роль адапторов выполняет набор маленьких (длиной всего около 80 нуклеотидов каждая) молекул РНК, называемых транспортными РНК (или тРНК).

Каждая молекула тРНК имеет характерную пространственную структуру, поддерживаемую теми же нековалентными взаимодействиями, которые удерживают вместе две цепи в двойной спирали ДНК. Однако в одноцепочечной молекуле тРНК комплементарное спаривание между нуклеотидными основаниями происходит в пределах одной цепи. Это приводит к тому, что молекула тРНК принимает определенную конформацию, существенную для выполнения функций адаптора. Четыре коротких сегмента молекулы образуют двухспиральную структуру, придающую молекуле вид двумерного «кленового листа». Этот кленовый лист в свою очередь упаковывается в многоскладчатую L-образную фигуру, которая скрепляется более сложными взаимодействиями на основе водородных связей (рис. 3-16). Два набора неспаренных нуклеотидных остатков по обоим концам «L» играют особенно важную роль для функционирования молекулы тРНК в биосинтезе белка: один из них образует антикодон, способный спариваться с комплементарным триплетом молекулы мРНК (кодоном); другой, имеющий последовательность ССА на 3'- конце молекулы, ковалентно связывается со специфической аминокислотой (рис. 3-16, А).

3.2.10. Считывание мРНК от одного конца до другого осуществляют рибосомы [18]

Перенос информации от мРНК к белку основан на том же принципе спаривания комплементарных оснований, что и перенос генетической информации от ДНК к ДНК и от ДНК к РНК (рис. 3-17). Однако процесс правильного расположения молекул тРНК на мРНК сложен

иосуществляется рибосомами, комплексами, образованными более чем 50 различными белками, связанными с несколькими молекулами РНК (рРНК), выполняющими структурную роль. Каждая рибосома работает как большая биохимическая машина, на которой молекулы тРНК выстроены так, чтобы считывать закодированные в мРНК генетические инструкции. Сначала рибосома связывается со специальным участком молекулы мРНК

итаким образом определяет рамку считывания и ами-

134

Рис. 3-17. Поток информации при синтезе белка. С участка в одной из цепей ДНК снимается комплементарная копия - матричная РНК. Затем нуклеотиды матричной РНК последовательно триплет за триплетом связывают комплементарные нуклеотиды антикодоновой петли определенных молекул тРНК. К противоположному концу каждой молекулы транспортной РНК (тРНК) прикреплена специфическая аминокислота и после спаривания эта аминокислота присоединяется к концу растущей белковой цепи. Таким образом, перевод последовательности нуклеотидов мРНК в последовательность аминокислот белка основан на комплементарном спаривании кодонов мРНК с антикодонами соответствующих молекул тРНК. Молекулярные основы переноса информации при трансляции оказываются аналогичными таковым при репликации и транскрипции ДНК. Заметим, что и синтез, и трансляция мРНК начинаются с 5'-конца.

ноконцевую аминокислоту белка. Затем рибосома по мере передвижения по молекуле мРНК транслирует кодон за кодовом, используя молекулы тРНК для последовательного присоединения аминокислот к растущему концу полипептидной цепи (рис. 3-18). Достигнув конца кодирующей части матрицы, рибосома и новосинтезированный карбоксильный конец белка отсоединяются от 3'-конца мРНК и переходят в цитоплазму клетки. Рибосомы работают очень эффективно: в 1 с одна бактериальная рибосома присоединяет к растущей полипептидной цепи 20 аминокислот. Подробнее структура рибосом и механизм синтеза белка описаны в гл. 5.

3.2.11. Некоторые молекулы РНК функционируют как катализаторы [19]

Когда-то молекулы РНК рассматривались как цепочка нуклеотидов с относительно неинтересными химическими свойствами. В 1981 г. эта точка зрения была поколеблена открытием каталитической молекулы РЫК с такими изощренными химическими свойствами, которые биохимики раньше связывали только с белками. Рибосомные молекулы РНК ресничного простейшего Tetrahymena вначале были синтезированы как большая группа предшественников. Было показано, что одна из рРНК получается путем реакции сплайсинга РНК. Удивительным в этом открытии было то, что сплайсинг можно осуществить in vitro в отсутствие белка. Позже было показано, что сама интронная последовательность обладает ферментоподобной активностью и может катализировать двухступенчатую реакцию, показанную на рис. 3-19.

Рис. 3-18. Схема синтеза белка на рибосомах. Рибосомы присоединяются к стартовому сигналу вблизи 5'-конца молекулы мРНК и передвигаются к 3'-концу, синтезируя по пути белок. Часто по одной молекуле мРНК движутся одновременно несколько рибосом, синтезируя несколько идентичных полипептидных цепей; такая структура в целом называется полирибосомой.

135

Рис. 3-19. Схема реакции самосплайсинга, при которой последовательность интрона катализирует собственное вырезание из молекулы рибосомной РНК у Tetrahymena. Реакция начинается с присоединения нуклеотида G к интронной последовательности, в результате чего происходит разделение цепи РНК. Затем вновь образованный 3'-конец цепи РНК подходит к другому концу и отделяет его, завершая реакцию.

В ходе дальнейших исследований было установлено, что синтезированная в пробирке интронная последовательность длиной в 400 нуклеотидов сворачивается с образованием структуры, способной функционировать как фермент в реакциях с другими молекулами РНК. Например, эта молекула способна связывать два специфических субстрата: нуклеотид гуанин и цепь РНК, и затем катализировать их ковалентное связывание, так что цепь РНК разрезается в специфической точке (рис. 3-20).

Рис. 3-20. Ферментоподобная реакция, катализируемая очищенной интронной последовательностью РНК у Tetrahymena. В этой реакции, которая соответствует первой стадии реакции, приведенной на рис. 3-19, и специфическая субстратная молекула РНК, и нуклеотид G тесно связываются с поверхностью каталитической молекулы РНК. Затем нуклеотид ковалентно связывается с субстратной молекулой РНК, разрезая ее в специфическом центре. Освобождение в результате этого двух цепей молекулы РНК дает возможность интронным последовательностям участвовать в дальнейших циклах реакции.

136

Рис. 3-21. Двумерное изображение каталитического остова интронной последовательности РНК, представленной на рис. 3-19 и рис. 3-20. Нормальные комплементарные пары оснований выделены цветом, а более слабые взаимодействия пар оснований показаны черным. Эта молекула содержит около 240 нуклеотидов; в нормальных условиях она свернута в плотную трехмерную структуру, но ее точная конформация неизвестна. РНК, способные к самосплайсингу и имеющие подобную структуру, были обнаружены в митохондриях грибов и в бактериальном вирусе (бактериофаг Т4).

Вэтой модельной реакции, которая соответствует первому шагу реакции на рис. 3-19, та же интронная последовательность действует многократно, разрезая многие цепи РНК. Хотя обычно сплайсинг РНК проходит без автокатализа, самосплайсинг РНК, установленный у Tetrahymena, был открыт и в других типах клеток, включая грибы и бактерии. Это позволяет предположить, что такие последовательности РНК могли возникнуть до расхождения родословных эукариот и прокариот около 1,5 млрд. лет назад.

Впоследнее время были открыты некоторые другие семейства каталитических РНК. Например, большинство тРНК изначально синтезировались как предшественники РНК, затем было показано, что одна молекула РНК играет основную каталитическую роль в РНК-белковом комплексе, распознавая эти предшественники и разрезая их в специфических точках. Катализирующая последовательность РНК играет также важную роль в жизненном цикле многих растительных вирусов, подобная последовательность обнаружена в РНК лягушки, хотя ее роль в данном случае не доказана. Более примечательно то, что обнаружение катализа на основе РНК дает теперь основания подозревать, что рибосомы обладают более широкими функциями, чем предполагалось. Весьма вероятно, что рибосомные белки играют второстепенную роль по сравнению с рибосомными РНК, которые составляют более половины массы рибосомы.

Каким образом молекулы РНК могут действовать наподобие ферментов? Пример тРНК показывает, что молекулы РНК могут складываться высокоспецифичным образом. Предложенная двумерная структура остова интронной последовательности Tetrahymena, способной к самосплайсингу, представлена на рис. 3-21. Взаимодействия между разными участками этой молекулы РНК (аналогичные необычным водородным связям в молекулах тРНК - см. рис. 3-16) ответственны за ее дальнейшее сворачивание с образованием сложной трехмерной поверхности с каталитическими свойствами. Необычное взаимное расположение атомов может деформировать ковалентные связи и, следовательно, придавать отдельным атомам в свернутой цепи РНК необычную реакционноспособность.

Как указывалось в гл. 1, открытие каталитических молекул РНК в корне изменило наши представления о происхождении первых живых клеток (см. разд. 1.З.4.).

137

Заключение

Генетическая информация записана в линейной последовательности нуклеотидов ДНК. Каждая молекула ДНК состоит из двух комплементарных полинуклеотидных цепей, удерживаемых вместе водородными связями, образующими GC- и АТ-пары оснований. Репликация ДНК, обеспечивающая удвоение генетической информации, происходит путем образования новой комплементарной цепи на каждой из исходных цепей.

Экспрессия генетической информации, заключенной в ДНК, осуществляется путем трансляции линейной последовательности нуклеотидов в колинеарную последовательность аминокислот белка. Сначала ограниченный участок ДНК копируется на комплементарную цепь РНК. Этот первичный транскрипт РНК подвергается сплайсингу для удаления интронных последовательностей и превращается в молекулу мРНК. В конце концов мРНК транслируется с образованием белка путем сложного набора реакций, происходящих в рибосоме. Вначале аминокислоты, используемые для синтеза белка, прикрепляются к семейству молекул тРНК, каждая из которых путем комплементарного спаривания оснований узнает набор из трех нуклеотидов мРНК. Последовательность нуклеотидов мРНК считывается с одного конца к другому триплетами нуклеотидов в соответствии с универсальным генетическим кодом.

Другие молекулы РНК в клетках используются как ферментоподобные катализаторы. Эти молекулы РНК сворачиваются с образованием такой структуры, в которой некоторые нуклеотиды поверхности могут стать необычно активными.

3.3. Структура белка [20]

Клетки в значительной степени состоят из белков, на долю которых приходится более половины их сухого вещества (см. табл. 3-1). Белки определяют структуру и форму клетки; кроме того, они служат инструментами молекулярного узнавания и катализа. ДНК, хотя и содержит всю необходимую для построения клетки информацию, оказывает незначительное прямое воздействие на клеточные процессы. Например, ген гемоглобина сам не переносит кислород: это свойство белка, кодируемого им. Используя компьютерную терминологию, можно сказать, что ДНК и мРНК представляют собой «программное обеспечение» - инструкции, полученные клеткой от родительской клетки. Белки и молекулы каталитических РНК составляют «аппаратное обеспечение» - физические механизмы, осуществляющие хранящуюся в памяти программу.

ДНК и РНК представляют собой цепи, построенные из нуклеотидов, химически очень похожих друг на друга. Напротив, молекулы белков собраны из 20 очень разных аминокислот, каждая из которых обладает ярко выраженной химической индивидуальностью. Это разнообразие лежит в основе необычайной универсальности химических свойств различных белков, и, по-видимому, эволюция выбрала именно белки, а не молекулы РНК в качестве катализаторов большинства реакций в клетке.

3.3.1. Форма белковой молекулы определяется ее аминокислотной последовательностью [21]

В длинной полипептидной цепи возможно свободное вращение атомов вокруг многих связей, что делает остов белковой молекулы очень гибким. Поэтому любая белковая молекула в принципе может принимать почти бесконечно большое число различных форм {конформаций). Однако большинство полипептидных цепей существуют лишь в одной из

138

Рис. 3-22. Схематически показано, как белок свертывается в глобулу. Полярные боковые группы аминокислот стремятся расположиться на наружной поверхности белка, где они могут взаимодействовать с водой. Неполярные боковые группы аминокислот расположены внутри, где образуют «спрятанное» от воды гидрофобное «ядро».

этих конформаций, определяемой последовательностью аминокислот. Это обусловлено тем, что боковые группы аминокислот взаимодействуют друг с другом и с водой с образованием слабых нековалентных связей (см. схему 3-1). В этом случае соответствующие боковые группы оказываются в ключевых местах цепи, между ними образуются сильные связи, что делает определенную конформацию очень стабильной.

Полипептидная цепь большинства белков самопроизвольно сворачивается с образованием правильной конформаций. При обработке определенными агентами белок можно развернуть, или денатурировать; при прекращении действия денатурирующего агента белок обычно самопроизвольно возвращается к исходной конформаций. Это указывает на то, что вся необходимая информация для определения формы белка содержится в самой последовательности аминокислот.

Одним из важнейших факторов, направляющих свертывание полипептидной цепи, является расположение полярных и неполярных боковых групп. Многочисленные гидрофобные боковые группы стремятся собраться внутри белковой молекулы, что позволяет им избежать контакта с водным окружением (точно так же сливаются механически диспергированные в воде капельки масла). В то же время все полярные группы стремятся, наоборот, расположиться на поверхности молекулы белка, где они могут взаимодействовать с водой и другими полярными группами (рис. 3-22). Именно таким путем происходит спаривание почти всех полярных групп, оказывающихся внутри белковой глобулы. Таким образом, водородные связи играют главную роль во взаимодействии разных участков одной полипептидной цепи в свернутой молекуле белка; кроме того, они имеют исключительно важное значение для многих взаимодействий, происходящих на поверхности белковых молекул (рис. 3-23).

Секретируемые белки, или белки клеточной поверхности, часто образуют дополнительные ковалентные связи между разными участками одной и той же полипептидной цепи. Например, образование дисуль-

Рис. 3-23. Водородные связи (выделены цветом), которые могут образовываться между аминокислотами в белках. Пептидные связи обозначены серым.

139

Рис. 3-24. Образование ковалентной дисульфидной связи между соседними остатками цистеина белка.

фидных связей (называемых также —S—S-мостиками) между двумя SH-группами цистеина, оказавшимися по соседству в свернутой полипептидной цепи, стабилизирует пространственную структуру внеклеточных белков (рис. 3-24). Для правильного свертывания белков эти связи не нужны, поскольку оно происходит нормально в присутствии восстанавливающих агентов, препятствующих образованию —S—S-мостиков. В самом деле, —S—S-мостики образуются редко (если образуются вообще) у белковых молекул в цитозоле, где высока концентрация агентов, восстанавливающих SH-группы и разрушающих такие мостики (см. разд. 8.6.11).

Общий результат всех индивидуальных взаимодействий аминокислот состоит в том, что большинство молекул белка спонтанно принимает характерную для них конформацию: обычно компактную глобулярную, но изредка и вытянутую фибриллярную. Сердцевина глобулы образована плотно упакованными, почти как в кристалле, гидрофобными боковыми группами, а полярные боковые группы формируют сложную и нерегулярную наружную поверхность. Специфичность связывания белка с малыми молекулами и другими макромолекулярными поверхностями определяется расположением и химическими свойствами различных атомов на этой сложной поверхности (см. ниже). С химической точки зрения белки - наиболее сложные из известных молекул.

3.3.2. Одни и те же способы укладки цепи постоянно повторяются в разных белках [22]

Хотя аминокислотная последовательность полипептидной цепи и содержит всю необходимую для ее свертывания информацию, мы до сих пор не знаем, как эту информацию прочесть, чтобы по последовательности детально предсказать пространственную структуру белка. В результате нативную конформацию белка можно определить лишь с помощью очень трудоемкого метода рентгеноструктурного анализа белковых кристаллов. Этим методом к настоящему времени полностью проанализировано более 100 белков. Специфическая конформация каждого из них столь сложна, что для ее детального описания потребовалась бы целая глава.

При сравнении пространственной структуры различных белков выяснилось, что, хотя конформация каждого белка уникальна, несколько способов укладки цепи постоянно повторяются в отдельных частях макромолекул. Особенно часто встречаются два способа укладки, поскольку они обусловлены регулярным образованием водородных связей между самими пептидными группами, а не уникальными взаимодействиями боковых цепей. Оба способа были правильно предсказаны

140

Рис. 3-25. β -Слой - это обычная структура участков глобулярных белков. Сверху показан включающий 115 аминокислот домен молекулы иммуноглобулина. Он состоит из двух β - слоев, уложенных наподобие сандвича, один из которых выделен цветом. Внизу более детально изображен совершенный антипараллельный β -слой. Обратите внимание на то, что каждая пептидная группа образует водородные связи с соседними пептидными группами. β -Слои, встречающиеся в глобулярных белках, обычно несколько менее регулярны, чем показанная здесь структура; часто β - слоиоказываются слабо скрученными (см. рис. 3-27).

в 1951 г. с помощью моделей, основанных на результатах рентгеноструктурного анализа шелка и волос. Сейчас эти периодические структуры называют β -кладчатым слоем и α -спиралью. В β -складчатой конформации находится белок шелка фиброин, α -спираль обнаружена в α -кератине - белке кожи и ее производных (волосах, ногтях и перьях).

Структура β -складчатого слоя составляет существенную часть сердцевины (core) большинства (хотя и не всех) глобулярных белков.

На рис. 3-25 для примера показана часть молекулы антитела; антипараллельный β - слой этой молекулы образован в результате многократного

изгибания полипептидной цепи на 180°, так что направление каждого прямого участка цепи противоположно направлению ближайших соседних участков. Такая структура обладает высокой прочностью, обусловленной образованием водородных связей между пептидными группами соседних

участков цепи. Поэтому антипараллельный β -слой часто служит каркасом, на котором собирается глобулярный белок.

α -Спираль образуется при закручивании полипептидной цепи вокруг себя с образованием жесткого цилиндра, в котором каждая пептидная группа связывается водородными связями с ближайшими пептидными группами цепи. Многие глобулярные белки содержат короткие участки таких α -спиралей (рис. 3-26); участки трансмембранного белка, который проходит сквозь липидный бислой, также почти всегда являются α -спиралями в силу сжатия, испытываемого им со стороны гидрофобного липидного окружения (см. разд. 6.2.1). В водной среде изолированная α -спираль обычно неустойчива. Однако две одинаковые α -спирали, имеющие повторяющиеся участки неполярных групп цепей, могут последовательно обвиваться вокруг друг друга с образованием чрезвычайно устойчивой структуры. Такие длинные стержневидные структуры обнаружены во многих фибриллярных белках, в частности во внутри-