Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Молекулярная биология клетки. Том 1

.pdf
Скачиваний:
462
Добавлен:
20.03.2015
Размер:
26.84 Mб
Скачать

221

Таблица 4-11. Использование некоторых радиоактивных изотопов в биологических исследованиях

Изотоп

Период полураспада 1)

 

 

32Р

14 сут

131I

8,1 сут

35S

87 сут

14С

5570 лет

45Са

164 сут

3Н

12,3 года

1) Изотопы расположены в порядке уменьшения энергии испускаемых ими электронов. 131I испускает также γ-лучи. Период полураспада - время, в течение которого распадается 50% атомов данного изотопа.

с одной колонки, наносят на следующую. После очистки белка до гомогенного состояния проводят тщательное определение его биологической активности. Можно определить также небольшой фрагмент аминокислотной последовательности белка и клонировать его ген; оставшуюся часть аминокислотной последовательности реконструируют по последовательности нуклеотидов в гене.

Даже если количество белка очень невелико, его молекулярную массу и субъединичный состав можно определить, используя ДСНэлектрофорез в ПААГ. В случае двумерного электрофореза белки разделяют на отдельные фракции изоэлектрическим фокусированием в одном направлении, после чего следует ДСН-электрофорез во втором направлении. Этот метод может быть использован для разделения тех белков, которые в норме считаются нерастворимыми.

4.5. Изучение клеточных макромолекул с помощью антител и радиоактивных изотопов

Для изучения клеточных макромолекул можно использовать практически все свойства молекул - физические, химические и биологические. При биологическом исследовании молекулы внутри клеток выявляют обычно по оптическим свойствам (в чистом виде или в комплексе с красителями), а также по биохимической активности. Здесь мы рассмотрим два метода определения молекул внутри клеток: один из них включает использование радиоактивных изотопов, а другой - использование антител. Оба метода весьма эффективны для выявления определенных молекул в сложных смесях. Потенциально эти методы очень чувствительны и при оптимальных условиях дают возможность обнаруживать в образце молекулы, общее количество которых меньше 1000.

4.5.1. Методы выявления радиоактивных атомов отличаются высокой чувствительностью [31]

Большинство известных природных элементов представляют собой смесь изотопов, различающихся массой атомного ядра, но имеющих, тем не менее, одинаковый набор электронов, а, следовательно, одинаковые химические свойства. Ядра радиоактивных изотопов, или радиоизотопов, нестабильны и подвергаются спонтанному распаду, образуя различные атомы. При распаде ядра испускаются заряженные частицы (например, электроны) или излучение (например, гамма-лучи).

Вследствие своей нестабильности в природе радиоизотопы встречаются редко, но в ядерных реакторах, где стабильные атомы подвергаются бомбардировке частицами высокой энергии, их образуется чрезвычайно много (табл. 4-11). В настоящее время многие биологические молекулы стали доступны в форме, содержащей радиоактивные атомы. Для регистрации излучения, испускаемого радиоактивными изотопами, используют различные подходы. Электроны (β-частицы) можно определять по ионизации газа, которую они вызывают в счетчике Гейгера, или в сцинтилляционном счетчике по маленьким вспышкам света в сцинтилляционной жидкости. С помощью этих методов в биологическом образце можно выявить содержание определенного радиоактивного изотопа. Наличие радиоактивных изотопов в образце регистрируют и методом радиоавтографии (по их действию на зерна серебра в фотоэмульсии). Данный метод характеризуется очень высокой чувствительностью, и в благоприятных условиях с его помощью можно зарегистрировать практически каждый распад, т. е. может быть учтен практически каждый радиоактивный атом.

222

4.5.2. Радиоактивные изотопы используют для изучения перемещения молекул в клетках и в целом организме [32]

Один из первых примеров использования феномена радиоактивности в биологических исследованиях - изучение превращения углерода в процессе фотосинтеза. Одноклеточные зеленые водоросли поместили в атмосферу, содержащую радиоактивно меченный СО2 (14СО2), и облучали в разные промежутки времени солнечным светом. Затем радиоактивное содержимое водорослей фракционировали с помощью хроматографии на бумаге. Небольшие молекулы, содержащие атомы 14С, происходящие из молекул СО2, выявляли на хроматограмме, помещая поверх высушенной бумажной хроматограммы лист фотопленки. Таким образом было идентифицировано большинство основных компонентов, образующихся в процессе фотосинтеза Сахаров из СО2.

Радиоактивные молекулы можно использовать для исследования практически всех внутриклеточных процессов. Для этого обычно в ходе эксперимента в культуральную среду добавляют предшественник в радиоактивной форме: при этом радиоактивные молекулы смешиваются с присутствующими в клетках нерадиоактивными. Клетка использует оба типа молекул, поскольку они отличаются только массой атомного ядра. Изменение локализации радиоактивных молекул в клетке или их химические превращения можно проследить во времени. Чувствительность таких экспериментов во многих случаях повышают, используя метод вытеснения метки (pulse-chase). При использовании этого метода радиоактивные вещества добавляют на очень короткое время (импульсная метка), затем их удаляют и замещают нерадиоактивными молекулами. Образцы отбирают через различные промежутки времени и в каждой такой точке определяют химическую природу и локализацию химических веществ (рис. 4-54).

Значение метода радиоактивного мечения трудно переоценить. Именно этот метод дает возможность дискриминировать химически идентичные молекулы, история которых различна - например, те молекулы, которые отличаются временем синтеза. С помощью радиоактивных методов удалось определить, что почти все молекулы живой клетки постоянно разрушаются и замещаются другими молекулами. Такие медленные обменные процессы могли бы остаться незамеченными, если бы не радиоактивные изотопы.

В настоящее время промышленность производит в радиоактивной форме практически все распространенные низкомолекулярные вещества. Независимо от степени сложности биологических молекул почти каждую из них можно пометить радиоактивной меткой. Часто получают радиоактивные молекулы, в структуру которых радиоактивные атомы введены в определенных положениях. Это делают для того, чтобы получить возможность следить за независимыми превращениями, претерпеваемыми различными частями одной молекулы в ходе биологических реакций

(рис. 4-55).

Рис. 4-54. Схема, иллюстрирующая суть типичного эксперимента с вытеснением импульсной метки. Буквами А, Б, и В помечены резервуары, которые соответствуют различным компартментам клетки (выявляемым с помощью радиоавтографии или в опытах, включающих фракционирование клетки) или различным химическим соединениям (выявляемым хроматографически или с помощью каких-либо иных химических методов).

223

Рис. 4-55. Три радиоактивные формы АТР, имеющиеся в продаже. Радиоактивные атомы выделены цветом. Приведены обозначения, с помощью которых указывается расположение и тип радиоактивных атомов.

Одна из наиболее важных областей применения радиоактивных изотопов в биологии клетки - это определение локализации радиоактивных соединений в срезах клеток или живых тканей методом радиоавтографии. При использовании этого метода живые клетки подвергают кратковременному (импульсному) мечению с последующей инкубацией в течение различных промежутков времени в нерадиоактивной среде. Затем клетки фиксируют и обрабатывают для проведения световой или электронной микроскопии. Каждый приготовленный препарат покрывают тонким слоем фотоэмульсии и оставляют на несколько дней в темноте - время, в течение которого происходит распад радиоактивного изотопа. Затем фотоэмульсию проявляют. Местоположение радиоактивных молекул в каждой клетке можно определить по расположению темных зерен серебра. Если инкубировать клетки с радиоактивным предшественником ДНК (3 Н-тимидином), то можно увидеть, что ДНК синтезируется в ядре и там же остается. И наоборот, мечение клеток радиоактивным предшественником РНК (3Н-уридином) показывает, что РНК исходно синтезируется в ядре и затем быстро накапливается в цитоплазме клеток.

4.5.3. Для выявления и выделения специфических молекул можно использовать антитела [33]

Антителами называют белки, продуцируемые позвоночными животными для защиты от инфекции (см. гл. 18). Количество различных

форм

224

Рис. 4-56. А. На электронной микрофотографии периферического участка эпителиальной клетки в культуре можно различить расположение микротрубочек и других филаментов. Б. С помощью метода непрямой иммуноцитохимии тот же участок окрашен флуоресцирующими антителами к тубулину, который является мономером микротрубочек (см. рис. 4-58). Стрелками указаны отдельные микротрубочки, хорошо различимые на обеих микрофотографиях (Osborn M., Webster R., Weber К., J. Cell Biol., 77, R27-R34, 1978, воспроизводится с разрешения Rockefeller University Press.)

антител достигает миллиона; этим антитела и отличаются от прочих белков. Каждая форма антител обладает определенными участками связывания, которые предназначены для специфического узнавания молекул, стимулировавших синтез антител. Эти молекулы называют антигенами. Высокая специфичность антител в отношении антигена превращает их в мощный инструмент для исследования биологии клетки. После окрашивания антител флуоресцирующими красителями их можно использовать для определения внутриклеточной локализации специфических макромолекул с помощью флуоресцентной микроскопии (рис. 4-56). Мечение электроноплотными микрочастицами, например, микросферами коллоидного золота, позволяет использовать антитела для локализации клеточных антигенов при помощи электронной микроскопии (рис. 4-57). Антитела могут выступать в роли биохимических звеньев для выявления и определения количества молекул в клеточных экстрактах и идентификации специфических белков после их разделения с помощью электрофореза в полиакриламидном геле. При связывании антител с инертным матриксом получают аффинные колонки, пригодные для выделения и очистки специфических молекул из грубых клеточных экстрактов. Чувствительность антител, используемых в качестве зонда для выявления специфических макромолекул в клетках и тканях, часто увеличивают с помощью метода усиления сигнала. Например, такую маркерную молекулу как флуоресцирующий краситель можно прямо связывать с антителами и использовать для непосредственного определения антигена (первые антитела). Еще большего усиления сигнала можно добиться, применяя немеченые первые антитела и затем выявляя их с помощью меченых вторых антител, связывающихся с первыми антителами (рис. 4-58, А).

Еще одна система усиления сигнала основана на исключительно высоком сродстве биотина (низкомолекулярного растворимого витамина) к стрептавидину (бактериальному белку). При ковалентном связывании первых антител с биотипом можно прямо пометить стрептавидин маркером и использовать его вместо вторых антител. Стрептавидин также можно применять для связывания отдельных молекул антител, меченных биотином, с разветвленной сетью молекул, меченных биотином (рис. 4-58, Б). Такие сети получают вследствие модификации метода (рис. 4-58, А) за счет применения третьего слоя антител.

Рис. 4-57. Иммуноцитохимическая локализация специфических белковых молекул на электронных микрофотографиях с помощью мечения антителами, связанными с частицами коллоидного золота. Показан тонкий срез клетки, секретирующей инсулин, где молекулы инсулина

помечены антиинсулиновыми антителами, связанными с мельчайшими микросферами золота (каждая в виде черной точки). Большая часть инсулина накапливается в плотном содержимом секреторных гранул; кроме того, содержимое некоторых секреторных гранул деградирует в лизосомах. (L. Orri, Diabetology, 28, 528-546,1985.)

225

Рис. 4-58. Применение антител для выявления определенных молекул с высокой чувствительностью. А. Иллюстрация метода непрямой иммуноцитохимии, высокая чувствительность которого определяется тем, что первое антитело (так называют молекулу антитела непосредственно связывающуюся с узнаваемой молекулой антигена) опознается многими молекулами антител второго типа. Эти вторые антитела предварительно связаны с маркерными молекулами, что и позволяет их регистрировать. В качестве маркерных молекул используют красители флуоресцеин и родамин (для флуоресцентной микроскопии), фермент щелочную пероксидазу (для электронной и светлопольной микроскопии), белок ферритин, содержащий железо, или микросферы коллоидного золота (для электронной микроскопии) и фермент щелочную фосфатазу (для биохимической детекции). Б. Модификация метода, представленного на А: вместо вторых антител используют взаимодействие биотина и стрептавидина, характеризуемое высоким сродством. Поскольку каждая из молекул стрептавидина может связать четыре молекулы биотина, она соединяет множество биотинилированных маркерных молекул поперечными сшивками с образованием громадной трехмерной сети. Внизу представлен особенно чувствительный метод «сандвича», где такие сети используются для интенсивного мечения каждой из молекул первых антител.

В наиболее чувствительных методах усиления сигнала в качестве маркерной молекулы используется фермент. Например, щелочная фосфатаза участвует в реакции образования неорганического фосфата, и поэтому связывание фермента со вторым антителом позволяет использовать чувствительный химический тест на фосфат для выявления комплекса антитело - антиген. Поскольку такая ферментная молекула вследствие своих каталитических свойств образует многие тысячи молекул продукта реакции, метод иммунодетекции с применением связанной формы фермента (Enzyme-Linked Immunoassay - ELISA) дает возможность обнаружить минимальное количество антигена. Данный метод хорошо зарекомендовал себя в клинической медицине для диагностики различных типов инфекций.

Обычно антитела извлекают из сыворотки, обогащенной антителами, которую получают путем многократного введения антигена животным (например, кролику или козе). Эта антисыворотка содержит гетерогенную смесь антител, каждый тип которых был образован определенными клетками, синтезирующими антитела (В-лимфоцитами). Различные антитела опознают различные части молекулы антигена, а также примеси в препарате антигена. Иногда специфичность антисыворотки к различным антигенам можно повысить, удалив молекулы нежелательных антител, которые связываются другими молекулами. Например, антисыворотку, полученную к белку X, можно пропустить через аффинную колонку с антигенами Y и Z и удалить таким образом все загрязняющие анти-Y и анти-Z антитела. Однако даже в этом случае сыворотка гетерогенна, что ограничивает ее применение.

226

4.5.4. Клеточные линии гибридом служат источником моноклональных антител [34]

Проблему гетерогенности антисыворотки удалось преодолеть в 1976 г. после разработки нового метода, который произвел революцию в исследовании внутриклеточных процессов с помощью антител. Этот метод включает клонирование В-лимфоцитов, секретирующих только один определенный тип антител, что обеспечивает получение однородных антител в большом количестве. Время жизни В-лимфоцитов в культуре обычно весьма ограничено. Поэтому от иммунизированных мышей получают В-лимфоциты, секретирующие отдельные виды антител, и осуществляют их слияние с «бессмертными» клетками из опухоли В-лимфоцитарного происхождения. В результате образуется гетерогенная смесь гибридных клеток, из которых отбирают гибриды, способные размножаться в культуре и синтезировать антитела определенного вида. Эти так называемые гибридомы клонируют по отдельности и получают клоны, каждый из которых является постоянным источником моноклональных антител одного типа (рис. 4-59).

Рис. 4-59. Схема получения гибридных клеток, или «гибридом», синтезирующих гомогенные моноклональные антитела против определенного антигена (X). Использованная для роста клеток селективная среда содержит ингибитор (аминоптерин), блокирующий нормальные пути биосинтеза нуклеотидов. Поэтому для синтеза нуклеиновых кислот клеткам приходится использовать обходной путь (шунт) биосинтеза. Но именно этот шунт нарушен у мутантных клеток, использованных для слияния с нормальными В-лимфоцитами. Поскольку ни одна из взятых для опыта клеточных линий в этой среде размножаться не может, в ней выживают только гибридные клетки.

227

Моноклональные антитела продуцируются В-лимфоцитами одного клона, т.е. клетками, ведущими свое начало от одной-единственной клетки. Поэтому все молекулы антител данного вида обладают одинаковой специфичностью связывания антигенов. Один такой участок может опознавать, например, определенную конформацию отдельной группы из 5-6 аминокислот боковой цепи белковой молекулы и такое же количество остатков Сахаров в полисахариде. Благодаря своей строгой специфичности моноклональные антитела имеют значительное преимущество по сравнению с обычной антисывороткой, которая, как правило, содержит антитела, опознающие множество различных участков-антигенов даже в сравнительно небольшой макромолекуле.

Основное преимущество метода гибридом определяется возможностью получения моноклональных антител против неочищенных молекул, содержащихся в сложной смеси в качестве минорного компонента. Это преимущество обеспечивается реальностью выбора индивидуальных гибридом, образующих антитела определенного вида, из сложной смеси различных гибридных клеток, продуцирующих множество разных антител. Таким образом в принципе можно получить моноклональные антитела против любого белка, содержащегося в клетке. Каждый тип антител можно затем использовать в качестве специфического зонда как для локализации белков с помощью цитологических методов, так и для очистки белков. Получив белки в чистом виде, мы можем исследовать их структуру и функцию. К настоящему времени выделено не более 5% из 1000 или более различных белков, которые, судя по имеющимся данным, содержатся в типичной клетке млекопитающих. Использование моноклональных антител и технологии клонирования генов (см. ниже) снимает многие сложности в идентификации и определении новых белков и генов. Проблемой для исследователей остается определение их функций.

4.5.5. Антитела и другие макромолекулы можно инъецировать в живые клетки [35]

Молекулы антител можно использовать для определения функции тех молекул, с которыми они связываются. Например, у новорожденных крыс, получивших антитела к белковому фактору, который стимулирует рост нейронов, не развиваются нервные клетки определенного типа, нуждающиеся для выживания в данном факторе роста. Подобным образом антитела, реагирующие с молекулами на поверхности некоторых типов клеток, можно использовать для уничтожения этих клеток; специфически удаляя клетки определенного типа из смешанной клеточной популяции, можно определить важность клеток этого типа для осуществления различных биологических функций.

Поскольку плазматическая мембрана клеток непроницаема для крупных молекул, белки, расположенные внутри живых клеток, не могут взаимодействовать с антителами, добавляемыми извне. Если такие белки необходимо связать, в цитоплазму клеток эукариот можно ввести антитела и другие молекулы, инъецируя их тонкой стеклянной пипеткой через плазматическую мембрану. Прокалываемая плазматическая мембрана имеет способность «самозапаиваться» спустя некоторое время после инъекции. С помощью этого метода было установлено, что при введении в

оплодотворенное яйцо морского ежа антител к миозину, его деление останавливается, хотя деление ядер происходит нормально. Отсюда следует, что миозин выполняет ключевую роль в процессах сокращения, обеспечивающих деление цитоплазмы при митозе, но не принимает участия в работе митотического веретена. Моноклональные антитела

228

обладают высокой специфичностью, их нетрудно получить в концентрированной форме, и поэтому они особенно удобны для проведения таких исследований.

Заключение

В клетке можно пометить любые молекулы: для этого в них вводят один или несколько радиоактивных атомов. Нестабильные радиоактивные атомы распадаются, испуская излучение, что позволяет прослеживать судьбу исследуемых молекул. Применение радиоизотопов в клеточной биологии ограничено двумя видами экспериментов: анализ метаболических путей по методу вытеснения метки и локализацией меченых молекул в клетке с помощью радиоавтографии. Антитела представляют собой очень удобный и чувствительный инструмент для локализации специфических биологических макромолекул. В организме позвоночных животных продуцируются миллионы различных антител, в каждом из которых имеются участки связывания, опознающие специфические группы молекул. Метод гибридом позволяет получать моноклональные антитела с одинаковой специфичностью практически в неограниченных количествах. В принципе можно получать моноклональные антитела против любых макромолекул в клетке и затем использовать эти антитела для локализации или очистки определенных макромолекул, а в некоторых случаях и для анализа внутриклеточных свойств этих молекул.

4.6. Технология рекомбинантных ДНК [36]

Основная проблема молекулярной биологии на сегодняшний день состоит в том, чтобы разобраться в тонких механизмах клеточных процессов. Мы обсудили несколько чувствительных методов очистки, анализа белков и слежения за ними в клетках. Этот последний раздел посвящен методам изучения структуры и функции клеточных ДНК. Классический подход подразумевает использование генетических методов, позволяющих судить о функции генов, анализируя фенотипы мутантных организмов и их потомства. Этот подход по-прежнему эффективен, но в последнее время он дополнен набором методов, которые в сумме известны как «технология рекомбинантных ДНК». Эти методы существенно расширили возможности генетических исследований, поскольку с их помощью удается проводить как прямой контроль, так и детальный химический анализ генетического материала. Используя методологию рекомбинантных ДНК, удается даже минорные клеточные белки получать в больших количествах и, следовательно, проводить тонкие биохимические исследования структуры и функции белка.

4.6.1. Технология рекомбинантных ДНК революционизировала клеточную биологию [37]

Еще не так давно, всего лишь в начале 70-х годов биохимики считали, что ДНК является наиболее сложным для исследования компонентом клетки. Чрезвычайно длинную, химически монотонную последовательность нуклеотидов в наследственном материале тогда можно было исследовать лишь с помощью косвенных методов - либо определяя структуру белка или РНК, либо с помощью генетического анализа. В настоящее время ситуация крайне изменилась. Если ранее анализ ДНК представлялся исследователям структуры биологических молекул крайне трудной задачей, то теперь, когда были разработаны новые методы анализа первичной структуры ДНК, такой анализ не составляет особого

229

труда. В настоящее время можно вырезать отдельные участки ДНК, получать их практически в неограниченном количестве и определять последовательность нуклеотидов по нескольку сот нуклеотидов в день.

С помощью этих же методов можно по желанию экспериментатора изменить выделенный ген и ввести его вновь в геном культивируемых клеток или эмбрион животного (что несколько более сложно), где этот измененный ген начинает функционировать.

Технология рекомбинантных ДНК оказала существенное воздействие на всю клеточную биологию, позволяя исследователям решать задачи, которые раньше казались неразрешимыми, например определять функции многих вновь открытых белков и их индивидуальных доменов, расшифровывать сложные механизмы регуляции экспрессии генов у эукариот. С помощью методов генной инженерии удалось в большом количестве получить многие белки, участвующие в регуляции клеточной пролиферации и развитии. Применение этих методов должно принести успех в крупномасштабном промышленном производстве белковых гормонов и искусственных вакцин, на получение которых ранее затрачивали очень много сил и средств.

Технология рекомбинантных ДНК включает в себя набор методов - как новых, так и заимствованных из других дисциплин, например из генетики микроорганизмов (табл. 4-12). Наиболее важные среди них это:

1) специфическое расщепление ДНК рестрицирующими нуклеазами, что существенно ускоряет выделение и манипуляции с различными

генами;

2) быстрое секвенирование всех нуклеотидов в очищенном фрагменте ДНК, что позволяет определить точные границы гена и аминокислотную последовательность, кодируемую им; 3) гибридизация нуклеиновых кислот, позволяющая выявлять специфические последовательности РНК или ДНК с большой точностью и чувствительностью на основании их способности связывать комплементарные последовательности нуклеи-

 

Таблица 4-12. Основные вехи в развитии технологии рекомбинантных ДНК

 

 

1869 -

Мишер (Miesher) впервые выделил ДНК

1944 -

Эвери (Avery) установил, что ДНК, а не белок, переносит генетическую информацию при трансформации бактерий

1953-

Уотсон и Крик (Watson, Crick) предложили модель двойной спирали ДНК, основанную на результатах

 

рентгеноструктурного анализа, проведенного Франклин и Уилкинсом (Franklin, Wilkins)

1961 -

Мармур и Доти (Marmur, Doty) открыли явление ренатурации ДНК, установив точность и специфичность реакции

 

гибридизации нуклеиновых кислот

1962 -

Арбер (Arber) впервые получил данные о существовании ферментов рестрикции ДНК, впоследствии выделенных и

 

использованных для определения последовательности ДНК Натансом и Смитом (Nathans, Smith)

1966 -

Ниренберг, Очоа и Корана (Nirenberg, Ochoa, Khorana) расшифровали генетический код

1967 -

Геллерт (Gellert) открыл ДНКлигазу - фермент, используемый для сшивания фрагментов ДНК

1972-73 -

В лабораториях Бойера, Коэна и Берга (Boyer, Cohen, Berg) и их коллег в Станфордском университете и в

 

Калифорнийском университете в Сан-Франциско была разработана технология клонирования ДНК

1975-77 -

Сэнгер и Баррел (Sanger, Barrel), а также Максам и Гилберт (Махат, Gilbert) разработали методы быстрого определения

 

нуклеотидной последовательности

1981-82 -

Пальмитер и Бринстер (Palmiter, Brinster) получили трансгенную мышь; Спрэдлинг и Рубин (Spradling, Rubin) получили

 

трансгенные экземпляры дрозофилы

230

новых кислот; 4) клонирование ДНК: интересующий исследователя ДНК-фрагмент вводят в самореплицирующийся генетический элемент (плазмиду или вирус), который используют для трансформации бактерий. Бактериальная клетка после трансформации воспроизводит этот фрагмент во многих миллионах идентичных копий; 5) генетическая инженерия, посредством которой последовательности ДНК изменяют с целью создания модифицированных версий генов, которые затем вновь внедряют в клетки или организмы.

Для того чтобы разобраться в технологии рекомбинантных ДНК, необходимо очень хорошо понимать природные механизмы, используемые клетками для репликации и расшифровки ДНК. Мы поэтому отложим детальное обсуждение клонирования генов и генетической инженерии. В гл. 5 эти вопросы будут разобраны после знакомства читателей с основными генетическими механизмами.

4.6.2. Рестрицирующие нуклеазы расщепляют ДНК в специфических участках нуклеотидных последовательностей

[38]

Для защиты от молекул чужеродных ДНК, способных проникнуть в клетку и вызвать ее трансформацию, многие бактерии вырабатывают ферменты рестрицирующие нуклеазы, способные разрушить чужеродную ДНК. Каждый такой фермент опознает в ДНК специфическую последовательность из 4-6 нуклеотидов. Соответствующие последовательности в геноме самих бактерий замаскированы метилированием остатков А и С, но любая чужеродная молекула ДНК, попав в клетку, немедленно опознается нуклеазой, и обе цепи ее ДНК разрезаются (рис. 4-60). Из различных видов бактерий было выделено множество рестрицирующих нуклеаз. В настоящее время различными фирмами производится более 100 таких ферментов, большинство из которых опознает различные последовательности нуклеотидов.

Индивидуальная рестрицирующая нуклеаза способна разрезать двойную спираль ДНК любой длины с образованием серии фрагментов, называемых рестрикционными фрагментами (рестриктами). Сравнение размеров фрагментов ДНК, полученных после обработки определенного участка генома набором рестрицирующих нуклеаз, позволяет построить рестрикционную карту, на которой указано положение каждого сайта рестрикции относительно других рестрикционных участков (рис. 4-61) Поскольку рестрикционная карта отражает расположение определенной последовательности нуклеотидов в данном участке, сравнение таких карт для двух или более родственных генов позволяет приближенно оценить гомологию между ними. Отсюда следует, что можно проводить сравнение различных участков ДНК (сравнивая их рестрикционные

Рис. 4-60. Последовательность нуклеотидов в ДНК, узнаваемая тремя широко используемыми рестрицирующими нуклеазами (участки узнавания). Такие последовательности часто содержат шесть нуклеотидов и являются «палиндромными», т. е. последовательности нуклеотидов в них в обоих направлениях читаются одинаково. Две цепи ДНК разрезаются в участке узнавания или вблизи от него, причем во многих случаях разрез проходит через обе цепи не перпендикулярно, т. е. в одном месте, а наискосок, образуя в результате липкие концы, например Eco R1 или Hind III. Рестрицирующие нуклеазы получают из различных бактерий: HpaI - из Haemophilus parainfluenzae, Eco Rl - из Escherichia coli, Hind III - из

Haemophilus influenzae.

Рис. 4-61. Простой пример, иллюстрирующий взаимное расположение на двойной спирали ДНК участков узнавания для различных рестрицирующих нуклеаз (именуемых также «сайтами рестрикции»), совокупность которых образует рестрикционную карту. Заключение: фермент А расщепляет вблизи одного из концов молекулы. Фермент Б должен расщеплять вблизи того же конца либо

вблизи другого конца. Размеры фрагментов, образующихся при расщеплении 2 ферментами исключают первое предположение и позволяют установить порядок сайтов рестрикции, указанный ниже