Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Молекулярная биология клетки. Том 1

.pdf
Скачиваний:
462
Добавлен:
20.03.2015
Размер:
26.84 Mб
Скачать

61

2.1.2. Клетки используют четыре основных типа молекул [2]

Определенные простые комбинации атомов, такие, как метальные (—СН3), гидроксильные (—ОН), карбоксильные (—СООН) группы и аминогруппы (—NH2), неоднократно повторяются в биологических молекулах. Каждая такая группа обладает определенными химическими и физическими свойствами, которые оказывают влияние на поведение любых молекул, содержащих такие группы. Общие сведения об основных типах химических групп и их отдельных характерных свойствах приведены на схеме 2-2.

Так называемые малые органические молекулы клетки представляют собой соединения углерода с мол. массой от 100 до 1000, содержащие до 30 атомов углерода. Молекулы такого рода обычно находятся в свободном состоянии в цитоплазматическом растворе, образуя пул промежуточных продуктов, дающих начало крупным молекулам, называемым макромолекулами. Они служат также важнейшими промежуточными продуктами в химических реакциях, преобразующих извлеченную из пищи энергию в пригодную для использования форму (см. ниже).

На долю малых молекул приходится около одной десятой всего клеточного органического вещества, причем в клетке присутствует (по приближенным оценкам) около тысячи различных видов таких молекул. Расщепляясь, все биологические молекулы распадаются до тех простых соединений, из которых они и синтезируются, причем синтез и распад происходят в результате ограниченного количества химических превращений, которые подчиняются определенным правилам. Следовательно, все имеющиеся в клетке соединения можно разбить на небольшое число отдельных семейств. Крупные макромолекулы (они рассматриваются в гл. 3) строятся из малых молекул и относятся, таким образом, к тем же семействам.

Вообще говоря, содержащиеся в клетках малые органические молекулы образуют четыре семейства: простые сахара, жирные кислоты, аминокислоты и нуклеотиды. В состав каждого из этих семейств входит много различных соединений, имеющих общие химические свойства. Хотя некоторые соединения клетки не попадают в эти категории, на упомянутые четыре семейства, включающие как малые молекулы, так и построенные из них макромолекулы, приходится удивительно большая часть клеточной массы (табл. 2-1).

2.1.3. Сахара как пища для клеток [3]

Сахара простейшего типа - моносахариды - представляют собой соединения с общей формулой (СН2О)n, где n - любое целое число от трех до семи. Глюкоза, например, имеет формулу С6Н12О6 (рис. 2-3). Как показано на рис. 2-3, сахара могут существовать либо в форме кольца, либо в виде открытой цепи. Сахара, имеющие структуру открытой цепи, содержат гидроксильные группы и, кроме того, либо альдегидную группу, либо кетогруппу. Альдегидная группа и кетогруппа играют особую роль. Во-первых, они могут вступить в реакцию с гидроксильной группой той же молекулы, что приводит к переходу последней в форму кольца. Углеродный атом исходной альдегидной или кетогруппы можно узнать по тому признаку, что это единственный в молекуле атом углерода, связанный с двумя атомами кислорода. Во-вторых, после образования кольца к этому углеродному атому может присоединиться один из атомов углерода гидроксильной группы молекулы другого сахара, в результате чего образуется дисахарид (схема 2-3). Присоеди-

62

Схема 2-1. Химические свойства воды и их влияние на поведение биологических молекул.

63

64

Схема 2-2. Ковалентные связи и группы, встречающиеся в биологических молекулах.

65

66

Рис. 2-2. Живые организмы синтезируют лишь небольшую часть органических молекул из всех тех, которые они в принципе могли бы образовать. Из шести изображенных на рисунке аминокислот в клетках синтезируется только самая верхняя - триптофан.

Таблица 2-1. Примерный химический состав бактериальной клетки

 

Доля от общей массы клетки,

Число типов молекул

 

%

 

 

 

 

Вода

70

1

Неорганические ионы

1

20

Сахара и их предшественники

1

250

Аминокислоты и их предшественники

0,4

100

Нуклеотиды и их предшественники

0,4

100

Жирные кислоты и их предшественники

1

50

Другие малые молекулы

0,2

~300

Макромолекулы (белки, нуклеиновые кислоты и полисахариды)

26

~3000

нение аналогичным путем большего числа моносахаридов приводит к образованию олигосахаридов все возрастающей длины (трисахаридов, тетрасахаридов и т. д.) вплоть до очень больших молекул полисахаридов, содержащих тысячи моносахаридных остатков. Поскольку у каждого моносахарида имеется несколько свободных гидроксильных групп, способных образовать связь с другим моносахаридом или каким-либо иным соединением, число возможных структур полисахаридов исключительно велико. Даже простой дисахарид, состоящий из двух остатков глюкозы, может существовать в 11 разновидностях (рис. 2-4), а три различные гексозы (С6Н12О6), соединяясь между собой, способны образовать несколько тысяч различных трисахаридов. Поэтому определение структуры любого конкретного полисахарида - дело исключительно сложное; определение имеющимися методами расположения полудюжины связанных Сахаров (например, в гликопротеине) занимает больше времени, чем выяснение нуклеотидной последовательности молекулы ДНК, состоящей из многих тысяч нуклеотидов.

Глюкоза служит главным источником энергии во многих клетках. В результате последовательного ряда реакций окисления (разд. 2.3.2) эта гексоза превращается в различные производные Сахаров с меньшей длиной цепи и в конечном итоге распадается до СО2 и Н2О. Суммарное

Рис. 2-3. Строение моносахарида глюкозы, простого сахара - гексозы. А. Форма открытой цепи находится в равновесии (в растворе) с более стабильной циклической структурой, представленной ниже (Б). В. Пространственная модель циклической структуры (p-D-глюкоза). Еще один из возможных вариантов изображения циклической структуры-конфигурация кресла (Г); широкое использование такого представления обусловлено тем, что оно наиболее точно отражает структуру сахара. На всех четырех изображениях цветной буквой О обозначен атом кислорода альдегидной группы. Структура и химизм Сахаров представлены на схеме 2-3.

67

68

69

Рис. 2-4. Одиннадцать дисахаридов, построенных из двух остатков D-глюкозы. Хотя разница между ними состоит лишь в тине связи между двумя остатками глюкозы, в химическом отношении они различны. Олигосахариды, связанные с белками и липидами, могут включать в себя шесть и более разных видов Сахаров, которые имеют как линейное, так и разветвленное строение благодаря связям, подобным тем, которые показаны на этом рисунке. Следовательно, число возможных различных типов олигосахаридов необычайно велико.

Рис. 2-5. Пальмитиновая кислота. Карбоксильная группа (выделена цветом) изображена в ионизированной форме. Справа показана пространственная модель молекулы.

уравнение реакции можно записать Следующим образом: С6Н12О6 + СО2 + 6СО2 + 6Н2О + Энергия.

В ходе распада глюкозы высвобождается энергия и генерируется восстановительная способность, без чего невозможно протекание биосинтетических реакций. Высвобождающаяся энергия и генерируемая восстановительная сила запасаются в форме двух важнейших соединений - АТР и NADH (см. разд. 2.3.1).

Простые полисахариды, построенные из повторяющихся остатков глюкозы (в животных клетках это главным образом гликоген, а в растительных - крахмал), используются для запасания энергии впрок. Однако нельзя считать, что сахара служат исключительно для получения и запасания энергии. Так, из простых полисахаридов состоит важный внеклеточный структурный материал (например, целлюлоза), а цепочки неповторяющихся молекул Сахаров часто бывают ковалентно связаны с белками в гликопротеинах и с липидами в гликолипидах.

2.1.4. Жирные кислоты - компоненты клеточных мембран

В молекуле жирной кислоты, например в пальмитиновой кислоте (рис. 2-5), имеются две различные части: длинная углеводородная цепь, которая имеет гидрофобный характер (водонерастворима) и химически мало активна, и карбоксильная группа, ионизирующаяся в растворе, крайне гидрофильная (водорастворимая) и легко образующая эфиры и амиды. Действительно, почти во всех случаях молекулы жирных

70

Схема 2-4. Некоторые типы жирных кислот, часто встречающихся в клетках, и образованные ими структуры.