Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
348
Добавлен:
19.03.2015
Размер:
1.02 Mб
Скачать
      1. Средства измерения скорости

До недавнего времени обратная связь по скорости большинства регулируемых электроприводов осуществлялась с помощью тахогенераторов постоянного и переменного тока. Наибольшее распространение получили тахогенераторы постоянного тока, обладающие высокой линейностью, хорошей симметричностью и большой крутизной выходной характеристики, у них отсутствует остаточное напряжение. К недостаткам тахогенераторов постоянного тока следует отнести наличие скользящего контакта, необходимость фильтрации выходного напряжения, сложность конструкции.

Тахогенераторы переменного тока в отличие от тахогенераторов постоянного тока определяют только значение частоты вращения и не определяют ее направление. Их выходная характеристика существенно нелинейна. Поэтому несмотря на простоту конструкции и отсутствие коммутации тахогенераторы переменного тока применяют редко.

В качестве датчика обратной связи по скорости в микро процессорных электроприводах обычно используются импульсные датчики, частота импульсов на выходе которых пропорциональна скорости, а число импульсов – перемещению контролируемого органа [3-13, 3-15].

В настоящее время в электроприводах, особенно в цифровых, в качестве датчиков скорости применяют фотоэлектрические и индукционные измерительные преобразователи. Это связано с необходимостью измерения малой скорости при глубоком ее регулировании.

Удовлетворение повышенных требований со стороны электропривода при использовании импульсного датчика возможно лишь за счет решения следующих вопросов: правильного выбора конструктивных параметров датчика (число импульсов на один оборот датчика, точность изготовления границ кодовых делений, точность сочленения с механизмом и т.д.) и способов формирования сигналов считывающих элементов, преобразования частоты импульсов в пропорциональный скорости числовой эквивалент, синхронизации процессов и фильтрации результатов измерения.

Основными методами измерения скорости в электроприводах с цифровым управлением являются следующие [3-13, 3-15]:

  1. Метод аналого-цифрового преобразования напряжения тахогенератора постоянного тока.

  2. Метод последовательного счета импульсов фотоэлектрического датчика за заданный интервал времени (Н-метод).

  3. Метод измерения длительности периодов между импульсами фотоэлектрического датчика (Т-метод).

  4. Метод цифрового дифференцирования кода угла ППК уравновешивания с индукционным датчиком.

Метод измерения скорости с помощью АЦП обладает недостатками, характерными для аналоговых систем, требуя принятия мер с целью компенсации дрейфа усилителей, фильтрации выходного напряжения и компенсации нелинейности тахогенератора в начальной зоне. Разрешающая способность тракта "ТГ-АЦП" не превышает 10-3.

Метод счета импульсов фотоэлектрического импульсного датчика позволяет измерять среднюю скорость за период дискретности Т системы. При использовании стандартных решений он имеет минимальную разрешающую способность в нижней части диапазона изменения скорости, где как раз требуется высокое качество ее регулирования.

Метод измерения длительности периода имеет высокую разрешающую способность на малой скорости и низкую – на большой. Следует отметить, что в верхней части диапазона изменения скорости, где соблюдается условие ТuТ, где Тu – период следования импульсов ФИД, значение измеряемой скорости приближается к мгновенной. Однако в нижней части диапазона измерение частоты вращения менее 1,8мин-1 каждый цикл расчета в микроЭВМ становится невозможным ввиду значительного увеличения периода следования импульсов. Например, период следования импульсов при частоте вращения 0,1мин-1 и дискретности ФИД, равной 104мин/оборот, достигает значения Тu=0,06с. При периоде дискретности системы Т=0,003с это недопустимо, так как вызывает запаздывание в цепи обратной связи по скорости.

Разрешающая способность устройств измерения, использующих индукционные измерительные преобразователи с механической редукцией 5:1, не превышает значения , что недостаточно. Таким образом, ни один из перечисленных выше методов не обеспечивает глубокое регулирование скорости. Основной причиной этого является ограниченная разрешающая способность устройств измерения скорости.

Для нахождения компромисса между конкретными технологическими требованиями и возможностями их реализации по точности и быстродействию с помощью импульсно-цифровых измерителей скорости предлагается ряд комбинированных методов (М/Т методы) [3-15], причем возможна реализация этих методов с помощью измерителей не только циклического, но следящего действия.

В качестве примера рассмотрим функциональную схему рис.18.16 устройства измерения скорости на базе фотоэлектрического импульсного датчика, для увеличения разрешающей способности которого применен метод интерполяции [3-13].

Рис.18.16. Двухканальное устройство измерения скорости с ФИД

Устройство имеет два информационных канала. В нижней части диапазона измерения работает интерполяционный преобразователь перемещение-код ИППК, преобразующий аналоговые сигналы ФИД в код Nφ1 угла.

В верхней части диапазона измерения работает дискретный преобразователь перемещение-код ДППК, реализующий метод счета импульсов ФИД. Он формирует код угла в виде Nφ=2к Nφ1, где 2к – коэффициент согласования отсчетов информационных каналов. Блок согласования отсчетов БСО синхронизирует работу информационных каналов. Блок цифрового дифференцирования БЦД формирует код Nω скорости в виде приращений кода Nφ угла. Данное устройство измерения скорости имеет высокое быстродействие. Его разрешающая способность достигает оборота вала электродвигателя.

На диапазон регулирования скорости цифрового электропривода с рассмотренным устройством измерения сильно влияет внутришаговая погрешность, вызываемая наличием гармонических составляющих в аналоговых сигналах ФИД. Предельное значение диапазона регулирования скорости при оптимальном выборе дискретности равно 1:20000.

Диапазон рабочих скоростей и быстродействие всех ППК следящего уравновешивания, рассмотренных выше, ограничением максимальной частоты преобразователя напряжение-частота ПНЧ. Для повышения быстродействия ППК выполняют по комбинированной структуре со следящим и поразрядным уравновешиванием. Аналогичного результата добиваются, изменяя в процессе работы ППК его дискретность.

Импульсно-цифровое измерение скорости предполагает предварительную обработку сигналов импульсного датчика, когда выделяются достоверные сигналы импульсного датчика, учетверяется его частотный сигнал, определяется направление вращения. Эта обработка сигналов может выполняться асинхронным или синхронным способом. В микропроцессорных системах предпочтение отдается синхронному варианту, так как он аппаратно реализуется проще, а сам МП является устройством с синхронной обработкой информации, при этом синхронизация всех процессов обработки информации в системе должна осуществляться от общего генератора – генератора процесса.

Соседние файлы в папке Учебник тау