Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
348
Добавлен:
19.03.2015
Размер:
1.02 Mб
Скачать

18.9. Принцип построения устройств измерения переменных состояний (координат) в электроприводах с микропроцессорным управлением

В электроприводах с микропроцессорным управлением в качестве средств измерения переменных состояний объекта регулирования применяют четыре основных вида датчиков обратной связи: перемещения (положения), скорости, тока и напряжения. Каждый из перечисленных датчиков характеризуется диапазоном измерения входной величины, разрешающей способностью, точностью преобразования, быстродействием и надежностью.

Рассмотрим принцип построения и особенности работы, область применения, достоинства и недостатки датчиков положения и скорости наиболее важных в микропроцессорных системах электропривода, по существу определяющих точностные характеристики системы в целом [3-13, 3-15].

18.9.1. Устройства измерения перемещения (положения)

Для измерения перемещения в качестве датчиков применяют фотоэлектрические и индукционные измерительные преобразователи. Фотоэлектрические датчики имеют высокую точность преобразования, хорошую разрешающую способность и большое быстродействие. Принцип их действий основан на модуляции светового потока с помощью подвижных элементов, имеющих переменную прозрачность. Модулированный в функции углового или линейного перемещения световой поток преобразуется фотоприемниками в электрический сигнал, который затем подвергается обработке.

В системах электропривода нашли применение два основных метода преобразования: считывание с кодовой маски и последовательный счет единичных приращений [3-15].

Кодовая маска представляет собой набор оптических шкал, позволяющих поставить в соответствие каждому квантовому уровню углового или линейного положения конкретную кодовую комбинацию. Чаще всего кодовая маска имеет только одну оптическую шкалу с чередующимися прозрачными и непрозрачными областями. В этом случае перемещение измеряется путем накопления единичных приращений.

В преобразователях последовательного счета используется четыре фотоприемника, причем каждый следующий фотоприемник имеет пространственный сдвиг по фазе, равный относительно предыдущего. Это позволяет путем определенного включения фотоприемников сформировать квадратурные сигналы, причем знак фазового сдвига между квадратурными сигналами определяет направление измеряемого перемещения.

Соответствующим набором параметров оптической решетки можно добиться синусоидальной формы квадратурных сигналов, которые могут быть преобразованы с помощью компараторов в сигналы прямоугольной формы. Таким образом, измеряемое перемещение представляется последовательностью прямоугольных импульсов, каждый из которых соответствует перемещению на один шаг оптической решетки.

Для повышения разрешающей способности фотоэлектрических датчиков перемещения используют способы дробления шага оптической решетки на четыре части и более. Рассмотрим дискретный преобразователь перемещение – код (ППК), реализующий метод последовательного счета импульсов фотоэлектрического датчика [3-13], схема которого представлена на рис.18.15.

Фотоэлектрический импульсный датчик (ФИД) формирует две пары прямых и инверсных сигналов прямоугольной формы, имеющие сдвиги по фазе . Прямые и инверсные сигналы попарно подаются на входы дифференциальных усилителей ДУ1 и ДУ2. Выходные сигналы ИД1 и ИД2 усилителей ДУ1 и ДУ2 поступают соответственно на входы сдвигающих регистров СРг1 и СРг2. Сдвигающие регистры, синхронизируемые тактовыми импульсами ТИ1, формируют двоичные коды, первые разряды которых соответствуют новому, а вторые – старому значению сигналов ФИД. Контроль уровня (логических значений "0" и "1") сигналов ИД1 и ИД2 ФИД осуществляется каждый такт синхронизации. Дешифратор Дш, стробируемый тактовыми импульсами ТИ2, анализирует состояние разрядов сдвигающих регистров и формирует сигналы "Счет" (см.таблицу 18.2). Выходные сигналы Дш, объединенные в группы "Плюс 1" и "Минус 1" схемой формирования импульсов СФИ, подаются, соответственно, на суммирующий и вычитающий входы реверсивного счетчика РСч. Реверсивный счетчик, накапливая импульсы, формирует код Nφ углового (линейного) перемещения.

Рис.18.15. Дискретный ППК с ФИД

Коэффициент умножения частоты сигналов ФИД в этом ППК равен 4. Схема нечувствительна к фазовым сдвигам ФИД и может обнаруживать ложные импульсы, возникающие в тракте передачи входных сигналов.

Для дальнейшего улучшения разрешающей способности используют метод интерполяции. ППК, реализующие метод интерполяции, могут быть построены как устройства прямого или уравновешивающего преобразования.

Большой коэффициент дробления шага оптической решетки при наличии квадратурных сигналов ФИД, имеющих малое содержание высших гармонических составляющих, обеспечивает интерполяционный ППК, реализующий способ следящего уравновешивания, схема и принцип действия которого рассмотрены в [3-13]. ППК такого типа относятся к системам с постоянным шагом квантования по уровню и переменной частоты счета. Недостатком синусно-косинусных интерполяторов является влияние на их точность дрейфа сигналов ФИД.

Таблица 18.2

Формирование сигналов "Счет"

Питание кода регистра

Сигнал "Счет"

Выходы Дш

СРг1

СРг2

новое

старое

новое

старое

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

0

0

0

0

0

1

0

1

0

1

0

1

0

1

Без изменения

Плюс 1

Минус 1

Без изменения

Минус 1

Ошибка

Плюс 1

Плюс 1

Ошибка

Минус 1

Без изменения

Минус 1

Плюс 1

Без изменения

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Благодаря высоким эксплуатационным качествам широко применяют индукционные измерители перемещения электромагнитного типа, в частности, синусно-косинусные вращающие трансформаторы (СКВТ), принцип действия которых основан на изменении по синусоидальному закону взаимной индукции между обмотками статора и ротора и, соответственно наведенной ЭДС при изменении углового положения φ ротора.

К достоинствам СКВТ следует отнести малый коэффициент ослабления выходного сигнала, к недостаткам – сложность изготовления обмоток. Этот недостаток отсутствует в индуктосинах – многополосных датчиках с плоскими печатными обмотками. Индуктосины делятся на линейные и угловые. К основным достоинствам индуктосинов следует отнести наличие эффекта усреднения погрешности нанесения печатных обмоток, что позволяет получать высокую точность [3-13].

Соседние файлы в папке Учебник тау