
- •Общая физиология возбудимых тканей
- •Раздражимость и возбудимость. Виды возбудимых тканей и их свойства. Общие и специфические признаки возбуждения. Законы возбуждения (силы, времени и градиента). Классификация раздражителей.
- •Физиологические особенности мембран возбудимых тканей. Роль
- •Природа потенциала покоя (определение и механизмы
- •Природа потенциала действия, характеристика его фаз. Закон
- •Механизмы проведения возбуждения по мякотным и
- •Особенности структурно-функциональной организации
- •Структура и физиологические свойства химического синапса.
- •Нейротрансмиттеры и их классификация. Особенности
- •Виды мышц. Механизм сокращения и расслабления скелетных
- •Виды сокращения скелетных мышц. Механизм развития
- •Функции центральной нервной системы. Основные принципы
- •18. Физиология базальных ядер полушарий.
- •19.Физиология коры. Ультраструктура новой коры. Зоны коры мозга и их функции.
- •20. Физиология лимбической системы. Структура, роль. Большой лимбический круг Пейпеца.
- •21. Физиология вегетативной системы. Особенности симпатической, парасимпатической, метасимпатической систем. Нейромедиаторы симпатической и парасимпатической систем.
- •Зрительная сенсорная система. Участие структур глазного яблока в
- •Строение и функциональное значение сетчатки. Виды
- •Теории цветоощущения. Основные формы нарушения цветового восприятия. Периметрия. Участие зрительной коры в формировании зрительного ощущения и восприятия.
- •Слуховая сенсорная система. Особенности строения и свойств звукопроводящего и звуковоспринимающего аппаратов. Механизмы восприятия и анализа звуков. Физиология слуховой коры.
- •Обонятельная сенсорная система. Классификация и рецепция запахов. Проводящие пути и центральные отделы обонятельной системы. Ароматерапия.
- •Вкусовая сенсорная система. Вкусовая рецепция. Проводящие пути и центральные отделы вкусовой системы. Классификация вкусовых ощущений. Вкусовая адаптация.
- •Болевая сенсорная система. Современные представления о ноцицепции и центральных механизмах боли. Теории и виды боли. Антиноцицептивная система.
- •Физиология соматосенсорной системы. Виды кожных и мышечных рецепторов. Проводящие пути кожной и мышечной информации. Соматосенсорная кора мозга.
- •Физиология внд
- •Врожденные формы поведения (безусловные рефлексы и инстинкты). Классификация, физиологическая роль.
- •Понятие о внд (работы и.П. Павлова). Отличия безусловных и условных рефлексов. Свойства условных рефлексов. Правила выработки условных рефлексов. Классификация условных рефлексов.
- •Механизмы образования условных рефлексов. Динамический
- •Теория функциональных систем п.К. Анохина и её значение для
- •Физиология потребностей и мотиваций. Теории возникновения
- •Физиология эмоций. Биологическая роль; вегетативные,
- •Физиология памяти. Виды и теории памяти. Механизмы
- •Функциональная асимметрия коры больших полушарий.
- •Типы высшей нервной деятельности, их классификация и
- •Физиология сна. Функции сна. Фазы и стадии сна, изменения
- •Сознание. Физиологические основы сознания. Критерии оценки
- •Основные этапы процесса дыхания. Физиологическая роль
- •Физиологические механизмы вдоха и выдоха. Виды дыхательных
- •Вопрос 45.
- •Вопрос 46.
- •Вопрос 47.
- •Вопрос 48.
- •Вопрос 49.
- •Вопрос 50.
- •Вопрос 51.
- •Вопрос 52.
- •Вопрос 54.
- •Тоны сердца, их происхождение. Аускультация и
- •Миогенные механизмы регуляции деятельности сердца.
- •Экстракардиальные механизмы регуляции деятельности сердца.
- •Внесердечные гуморальные механизмы регуляции деятельности
- •Функциональная классификация сосудов. Основные параметры
- •Кровяное давление, его виды и роль. Расчет пульсового, среднего
- •Артериальный пульс, его происхождение и клинико
- •Структурно-функциональная характеристика компонентов
- •Строение и функции лимфатической системы. Механизмы
- •Современные представления о локализации и строении
- •Гуморальная регуляция кровообращения. Сосудосуживающие и
- •Понятие о внутренней среде организма и системе крови. Состав,
- •Физиология эритроцитов. Количество, размер, форма, время жизни
- •Физиология лейкоцитов. Лейкопоэз и его регуляция.
- •Физиология тромбоцитов. Количество тромбоцитов, их строение,
- •Свертывание крови. Механизмы сосудисто-тромбоцитарного и
- •Группы крови. Аво и Rh системы: характеристика
- •Физиология гипоталамо-гипофизарной системы. Гормоны
- •Физиология щитовидной железы. Значение и механизмы действия тиреоидных гормонов. Гипо- и гиперфункция щитовидной железы.
- •Физиология паращитовидных желёз. Функции кальцитонина, паратиреоидных гормонов и витамина d в регуляции кальциевого гомеостаза.
- •Физиология надпочечников. Гормоны коркового и мозгового вещества надпочечников: механизмы действия и эффекты. Механизмы контроля деятельности надпочечников.
- •Физиология половых желез. Механизмы действия половых гормонов и вызываемые ими эффекты. Механизмы регуляции секреции половых гормонов.
- •Яичники
- •Яички или семенные железы
- •Гормоны половых желез.
- •Андрогены
- •Эстрогены
- •Роль гормонов поджелудочной железы в регуляции углеводного,
- •Участие желез внутренней секреции в приспособительной
- •81. Пищеварение в полости рта. Механическая и химическая обработка пищи. Физиологические механизмы слюноотделения, жевания и глотания. Количество, состав и свойства слюны. Роль слюны в пищеварении.
- •85. Пищеварение в толстом кишечнике. Моторика толстого кишечника и ее регуляция. Значение для организма микрофлоры толстого кишечника. Механизмы регуляции выделения непереваренных остатков пищи.
- •87.Физиология терморегуляции. Температура карта тела человека и её суточные колебания. Механизмы теплопродукции и теплоотдачи.
- •88. Общая функциональная характеристика систем выделения (почки, кишечник, легкие, кожа). Почка как истинный орган выделения. Выделительные и невыделительные функции почки.
- •Нефрон как структурно-функциональная единица почек.
- •Процессы реабсорбции и секреции в почках. Количество и состав
Физиология гипоталамо-гипофизарной системы. Гормоны
гипоталамуса и гипофиза, их физиологическая роль. Принцип положительной и отрицательной обратной связи в системе: «Гипоталамус – аденогипофиз – периферические эндокринные железы».
В основном, регуляция внутри эндокринной системы осуществляется посредством гормональных и нейрогормональных механизмов. Высшим центром нейрогормонального управления, который осуществляет переключение регуляции с нервной системы на эндокринную, является гипоталамо-гипофизарная система. Она включает в себя гипоталамус – один из отделов промежуточного мозга и гипофиз – эндокринную железу, которая локализуется в головном мозге.
В гипоталамо-гипофизарном структурно-функциональном объединении различают две относительно самостоятельные системы. Первая система состоит из супраоптическогоипаравентрикулярного ядер гипоталамуса, которые связаны с гипофизом гипоталамо-гипофизарным нервным трактом.
Вторая система состоит из гипофизотропной зоны гипоталамуса, которая связана с гипофизом венозной сосудистой сетью. В гипофизотропной зоне гипоталамуса синтезируются нейрогормоны, которые называютрилизинг-факторами.
Нейрогормон - это специфические биологически активные вещества, которые вырабатываются нервными клетками и оказывают регулирующее влияние на функции клеток-мишеней вдали от места своего образования.
Через воротную венозную сосудистую сеть нейрогормоны поступают в гипофиз, где оказывают регулирующее влияние на его гормонообразовательную функцию.
Выделяют две группы рилизинг-факторов: либерины истатины.
Либерины стимулируют синтез и секрецию гормонов гипофиза. К ним относятся:
1) кортиколиберин,2) тиролиберин,3) гонадолиберины - люлиберин (рилизинг-фактор лютеинизирующего гормона) и фолиберин (рилизинг-фактор фолликулостимулирующего гормона),4) соматолиберин,5) пролактолиберин,6) меланолиберин.
Статины угнетают образование и выделение гормонов гипофиза. К ним относятся:1) соматостатин,2) меланостатин,3) пролактостатин.
Нейрогормональная регуляция гормонообразовательной функции осуществляется автоматически по кибернетическому принципу обратной связи. При избытке эффекторного гормона в крови тормозится синтез и выделение либеринов, а статинов - активируется. В случае недостатка эффекторного гормона, наоборот, инкреция активаторов увеличивается, а ингибиторов – снижается.
Анатомически в гипофизе выделяют переднюю, среднюю (промежуточную) и заднюю доли. Промежуточная доля гипофиза у человека слабо выражена. Вместе с передней долей они функционально объединяются в аденогипофиз
Отечественный ученый М.М. Завадовский, изучая закономерности в регуляции деятельности эндокринных желез, впервые в 1933 г. сформулировал принцип “плюс-минус взаимодействие”, получивший в дальнейшем название “принцип обратной связи”.
Под обратной связью подразумевается система, в которой конечный продукт деятельности этой системы (например, гормон, нейротрансмиттер и другие вещества) модифицирует или видоизменяет функцию компонентов, составляющих систему, направленную на изменение количества конечного продукта (гормона) или активности системы. Жизнедеятельность всего организма является следствием функционирования многочисленных саморегулируемых систем (выделительная, сердечно-сосудистая, пищеварительная, дыхательная и др.), находящихся в свою очередь под контролем нейроэндокринно-иммунной системы. Все перечисленное представляет, таким образом, комплекс различных саморегулируемых систем, находящихся в определенной степени зависимости и “подчиненности”. Конечный результат или активность системы может модифицироваться двумя путями, а именно путем стимуляции для увеличения количества конечного продукта (гормона) или повышения активности эффекта, или путем угнетения (ингибирования) системы с целью уменьшения количества конечного продукта или активности. Первый путь модифицирования называется положительной, а второй – отрицательной обратной связью. Примером положительной обратной связи является повышение уровня гормона в крови, стимулирующее высвобождение другого гормона (повышение уровня эстрадиола в крови вызывает высвобождение ЛГ в гипофизе), а отрицательной обратной связи, когда повышенный уровень одного гормона угнетает секрецию и высвобождение другого (повышение концентрации тироидных гормонов в крови снижает секрецию ТТГ в гипофизе).
Под “длинной” цепью обратной связи подразумевается взаимодействие периферической эндокринной железы с гипофизарными и гипоталамическими центрами (не исключено, что и с супрагипоталамическими и другими областями ЦНС) посредством влияния на указанные центры изменяющейся концентрации гормонов в циркулирующей крови. Под “короткой” цепью обратной связи понимают такое взаимодействие, когда повышение гипофизарного тропного гормона (например, АКТГ) модулирует и модифицирует секрецию и высвобождение гипофизотропного гормона (в данном случае кортиколиберина). “Ультракороткая” цепь обратной связи – вид взаимодействия в пределах гипоталамуса, когда высвобождение одного гипофизотропного гормона влияет на процессы секреции и высвобождения другого гипофизотропного гормона. Этот вид обратной связи имеет место в любой эндокринной железе. Так, высвобождение окситоцина или вазопрессина через аксоны этих нейронов и посредством межклеточных взаимодействий (от клетки к клетке) модифицирует активность нейронов, продуцирующих эти гормоны. Другой пример, высвобождение пролактина и его диффузия в межваскулярные пространства приводит к влиянию на соседние лактотрофы с последующим угнетением секреции пролактина.
“Длинная” и “короткая” цепи обратной связи функционируют как системы “закрытого” типа, т.е. являются саморегулирующими системами. Однако они отвечают на внутренние и внешние сигналы, изменяя на короткое время принцип саморегуляции (например, при стрессе и др.). Наряду с этим на указанные системы влияют механизмы, поддерживающие биологический циркадный ритм, связанный со сменой дня и ночи. Циркадный ритм представляет собой компонент системы, регулирующий гомеостаз организма и позволяющий адаптироваться к изменяющимся условиям внешней среды. Информация о ритме день-ночь передается в ЦНС с сетчатки глаза на супрахиазматические ядра, которые вместе с эпифизом образуют центральный циркадный механизм – ”биологические часы”. Помимо механизма день-ночь, в деятельности этих “часов” принимают участие другие регуляторы (изменение температуры тела, состояние отдыха, сна и др.). Супрахиазматическим ядрам принадлежит интегрирующая роль в поддержании биологических ритмов. Около 80% клеток супрахиазматических ядер возбуждается при действии ацетилхолина. Попытки изменить ритм деятельности ядер инфузией большого количества серотонина, дофамина, тиролиберина, вещества Р, глицина или g-аминомасляной кислоты оказались неэффективными. Однако в этой области обнаружены некоторые гормоны (вазопрессин, гонадолиберин, вещество Р), которые, несомненно, каким-то образом участвуют в механизмах поддержания биологических ритмов. Секреция многих гормонов (АКТГ, СТГ, глюкокортикоиды и др.) подвержена на протяжении суток значительным колебаниям. На рис. 3 представлен суточный ритм секреции СТГ. Изучение циркадной секреции гормонов имеет большое клиническое значение, так как при некоторых заболеваниях (акромегалия, болезнь Иценко – Кушинга) нарушение суточного ритма секреции гормонов является важным дифференциально-диагностическим признаком, который используется в дифференциации синдромно сходной патологии.