Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
2 курс / Нормальная физиология / Ответы_к_экзамену_по_нормальной_физиологии_2.docx
Скачиваний:
4
Добавлен:
04.02.2024
Размер:
1.5 Mб
Скачать

Вопрос 46.

Газообмен в легких.

Газообмен в легких совершается между альвеолярным воздухом и кровью путем диффузии. Альвеолы легких оплетены густой сетью капилляров. Стенки альвеол и капилляров очень тонкие, что способствует проникновению газов из легких в кровь и наоборот. Газообмен зависит от величины поверхности, через которую осуществляется диффузия газов, и разности парциального давления (напряжения) диффундирующих газов. При глубоком вдохе альвеолы растягиваются, и их поверхность достигает 100-105 м2. Так же велика и поверхность капилляров в легких. Есть, и достаточная, разница между парциальным давлением газов в альвеолярном воздухе и напряжением этих газов в венозной крови.

Факторы:

  1. Уровень вентиляции в легких

  2. Перфузия легких (кровоснабжение)

  3. Особенности диффузии газов через аэрогематический барьер (определяется разницей парциальный давлений газов, и составляет аэрогематический барьер)

Парциальное давление газов – давление, под которым газ находится в газовой среде.

Если характеризуется содержание газов в жидкости используется понятие парциальное напряжение.

Особенности газообмена в тканях.

Обмен газов в тканях осуществляется в капиллярах. Через их тонкие стенки кислород поступает из крови в тканевую жидкость и затем в клетки, а углекислота из тканей переходит в кровь. Концентрация кислорода в крови больше, чем в клетках, поэтому он легко диффундирует в них.

Концентрация углекислого газа в тканях, где он собирается, выше, чем в крови. Поэтому он переходит в кровь, где связывается химическими соединениями плазмы и отчасти с гемоглобином, транспортируется кровью в легкие и выделяется в атмосферу.

Вопрос 47.

Транспорт газов кровью.

Кровь переносит кислород и углекислый газ. В крови, как и во всякой жидкости, газы могут находиться в двух состояниях: в физически растворенном и химически связанном. И кислород и углекислый газ в очень небольшом количестве растворяются в плазме крови. Большая часть кислорода и углекислого газа переносится в химически связанном виде.

Основной переносчик кислорода - гемоглобин крови. 1 г гемоглобина связывает 1,34 мл кислорода. Гемоглобин обладает способностью вступать в соединение с кислородом, образуя оксигемоглобин. Чем выше парциальное давление кислорода, тем больше образуется оксигемоглобина. В альвеолярном воздухе парциальное давление кислорода 100-110 мм рт. ст. При таких условиях 97% гемоглобина крови связывается с кислородом. Кровь приносит к тканям кислород в виде оксигемоглобина. Здесь парциальное давление кислорода низкое, и оксигемоглобин - соединение непрочное - высвобождает кислород, который используется тканями. На связывание кислорода гемоглобином оказывает влияние и напряжение углекислого газа. Углекислый газ уменьшает способность гемоглобина связывать кислород и способствует диссоциации оксигемоглобина. Повышение температуры также уменьшает возможности связывания гемоглобином кислорода. Известно, что температура в тканях выше, чем в легких. Все эти условия помогают диссоциации оксигемоглобина, в результате чего кровь отдает высвободившийся из химического соединения кислород в тканевую жидкость.

При специальной тренировке организм может приспосабливаться к пониженному содержанию кислорода в атмосферном воздухе. У тренированного человека углубляется дыхание, увеличивается количество эритроцитов в крови за счет усиленного образования их в кроветворных органах и поступления из депо крови. Кроме того, усиливаются сердечные сокращения, что приводит к увеличению минутного объема крови.

Для тренировки широко применяют барокамеры.

Углекислый газ переносится кровью в виде химических соединений - бикарбонатов натрия и калия. Связывание углекислого газа и отдача его кровью зависят от его напряжения в тканях и крови.

Кроме того, в переносе углекислого газа участвует гемоглобин крови. В капиллярах тканей гемоглобин вступает в химическое соединение с углекислым газом. В легких это соединение распадается с освобождением углекислого газа. Около 25-30% выделяемого в легких углекислого газа переносит гемоглобин.

Кривая диссоциации оксигемоглобина

Сродство гемоглобина к кислороду

Эффект рН и температуры на сродство гемоглобина к кислороду. Молекулы гемоглобина способны реагировать с ионами водорода, в результате этой реакции происходит снижение сродства гемоглобина к кислороду. При насыщении гемоглобина менее 100 % низкое рН понижает связывание кислорода с гемоглобином — кривая диссоциации оксигемоглобина смещается вправо по оси х. Это изменение свойства гемоглобина под влиянием ионов водорода называется эффектом Бора. Метаболически активные ткани продуцируют кислоты, такую как молочная, и С02. Если рН плазмы крови снижается от 7,4 в норме до 7,2, что имеет место при сокращении мыщц, то концентрация кислорода в ней будет возрастать вследствие эффекта Бора. Например, при постоянном рН 7,4 кровь отдавала бы порядка 45 % кислорода, т. е. насыщение гемоглобина кислородом снижалось до 55 %. Однако когда рН снижается до 7,2, кривая диссоциации смещается по оси х вправо. В результате насыщение гемоглобина кислородом падает до 40 %, т. е. кровь может отдавать в тканях до 60 % кислорода, что на 1/з больше, чем при постоянном рН.

Метаболически активные ткани повышают продукцию тепла. Повышение температуры тканей при физической работе изменяет соотношение фракций гемоглобина в эритроцитах и вызывает смещение кривой диссоциации оксигемоглобина вправо вдоль оси х. В результате большее количество кислорода будет освобождаться из гемоглобина эритроцитов и поступать в ткани. Эффект 2,3-дифосфоглицерата (2,3-ДФГ) на сродство гемоглобина к кислороду. При некоторых физиологических состояниях, например при понижении Р02 в крови ниже нормы (гипоксия) в результате пребывания человека на большой высоте над уровнем моря, снабжение тканей кислородом становится недостаточным. При гипоксии может понижаться сродство гемоглобина к кислороду вследствие увеличения содержания в эритроцитах 2,3-ДФГ. В отличие от эффекта Бора, уменьшение сродства гемоглобина к кислороду под влиянием 2,3-ДФГ не является обратимым в капиллярах легких. Однако при движении крови через капилляры легких эффект 2,3-ДФГ на снижение образования оксигемоглобина в эритроцитах (плоская часть кривой диссоциации оксигемоглобина) выражен в меньшей степени, чем отдача кислорода под влиянием 2,3-ДФГ в тканях (наклонная часть кривой), что обусловливает нормальное кислородное снабжение тканей.

КИСЛОРОДНАЯ ЕМКОСТЬ КРОВИ - максимальное количествокислорода, обратимо связанное кровью; выражается в объемных процентах; зависит от концентрации в кровигемоглобина. Кислородная емкость крови человека ок. 18-20%.

Оксигемометрия— фотометрический метод измерения степени насыщения артериальной крови кислородом, т. е. процентного содержания в ней гемоглобина в форме оксигемоглобина. Оксигемометрия позволяет судить, насколько полно осуществляется оксигенация крови в легких, так как она дает объективный показатель эффективности внешнего дыхания и кровообращения. Оксигемометрию используют для выявления гипоксемической циркуляторной гипоксии (см.). О. производят специальными приборами — оксигемометрами.

Пульсоксиметрия — методика определения количества кислорода, связанного с гемоглобином, в артериальной крови. К каждой молекуле гемоглобина может присоединится до четырех молекул кислорода. Средний процент насыщения молекул гемоглобина является кислородной сатурацией крови. 100% сатурация означает, что ккаждая молекула гемоглобина в исследуемом объеме крови переносит четыре молекулы кислорода.