Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
2 курс / Нормальная физиология / Ответы_к_экзамену_по_нормальной_физиологии_2.docx
Скачиваний:
4
Добавлен:
04.02.2024
Размер:
1.5 Mб
Скачать
  1. Основные этапы процесса дыхания. Физиологическая роль

дыхательных путей и легких. Методы исследования дыхания. Спирография, показатели спирограммы и их нормативные значения. Понятие о дыхательных шумах; условия их выслушивания.

Условно процесс дыхания делится на 3 этапа:

Внешнее дыхание.

Диффузия кислорода и его транспортировка к тканям.

Тканевое дыхание.

Первый этап дыхания - внешнее дыхание

В процессе внешнего дыхания кислород из внешней среды доставляется в альвеолы легких. На адекватность внешнего дыхания влияют многие факторы. Процесс внешнего дыхания начинается с верхних дыхательных путей, которые очищают, согревают и увлажняют вдыхаемый воздух. Эффективность очищения вдыхаемого воздуха зависит от количества и качественного состояния макрофагов, которые содержатся в слизистых оболочках дыхательных путей. Изнутри поверхность верхних дыхательных путей выстлана реснитчатым псевдомногослойным эпителием, который эвакуирует мокроту из верхних дыхательных путей. В норме из трахеи и бронхов за сутки удаляется до 100 мл мокроты (при некоторых патологиях эта цифра возрастает более, чем на порядок).

Очень важную функцию в нормальной работе верхних дыхательных путей играет кашлевый рефлекс, при нарушении которого не происходит своевременного освобождения верхних дыхательных путей от патологического секрета.

Дыхательные пути подразделяются на:

верхние дыхательные пути: нос, рот, глотка, гортань;

нижние дыхательные пути: трахея, бронхи.

Емкость верхних дыхательных путей образует анатомически мертвое пространство, воздух которого не участвует в газообмене. Объем анатомически мертвого пространства приблизительно равен 150 см3 (2,2 см3 на 1 кг массы тела человека).

Вентиляция легких зависит от дыхательного обмена и частоты дыхания. Величина вдоха определяется как разница между силой сокращения дыхательных мышц и эластичностью легких, которая зависит от поверхностного натяжения жидкости, покрывающей альвеолы и эластичности самой легочной ткани.

Значимость (по убыванию) вентилируемости легких во время дыхания:

нижний отдел;

передний отдел;

задний отдел;

верхушка.

Работа дыхания увеличивается при заболеваниях легких, которые сопровождаются повышением эластичного и неэластичного сопротивления.

Второй этап дыхания - диффузия и транспортировка кислорода к тканям

Диффузия кислорода осуществляется через ацинус - структурную единицу легкого, который состоит из дыхательной бронхиолы и альвеол. Диффузия кислорода осуществляется за счет парциальной разности содержания кислорода в альвеолярном воздухе и венозной крови, после чего незначительная часть кислорода растворяется в плазме, а основная часть кислорода связывается с гемоглобином, и транспортируется с током крови к органам и тканям организма. Соседние альвеолы сообщаются между собой порами межальвеолярных перегородок, через которые возможна незначительная вентиляция альвеол с закупоренными слизью ходами, например, при астме.

Альвеолы изнутри покрыты сурфактантом - сложным белковым поверхностно-активным веществом, который очень чувствителен к снижению кровообращения, вентиляции легких, уменьшению парциального напряжения кислорода в артериальной крови, что вызывает уменьшение количества сурфактанта, из-за чего нарушается стабильность поверхности альвеол. Сурфактантный комплекс препятствует спадению терминальных бронхиол, осуществляет противоотечную функцию, играет важную роль в регуляции водного баланса, оказывает защитное действие за счет противоокислительной активности.

Третий этап дыхания - утилизация кислорода в тканях

Кислород утилизируется в цикле Кребса - биологическое окисление белков, жиров и углеводов, с целью выработки энергии. Молекулярной основой клеточного дыхания является окисление углерода до углекислого газа и перенос атома водорода на атом кислорода с образованием молекулы воды. Это аэробный путь получения энергии, который в организме человека является ведущим (примерно 98% всей энергии, которую получает организм, образуется в условиях аэробного окисления; остальное приходится на анаэробное окисление).

Сосудистое русло легких состоит из двух систем: легочной и бронхиальной. Давление в легочной артерии составляет 17..23 мм рт. ст. Общая поверхность стенок капилляров - 30..60 м2 (при физической нагрузке увеличивается до 90 мм2). Диастолическое давление в левом желудочке составляет 0,2 мм рт. ст. Поэтому, нормальный кровоток в системе легочной артерии зависит от величины венозного возврата крови в сердце, сократительной способности миокарда, функционирования клапанов сердца, тонуса артеирол и прекапиллярных сфинктеров. Поскольку малый круг кровообращения относится к системе сосудов с низким давлением, то его объем может колебаться в значительных пределах, в зависимости от конкретных условий.

Дыхательные пути выполняют очень важную функцию - кондиционирование воздуха. Благодаря этому в легкие поступает воздух только определенных параметров. В дыхательных путях воздуха:

- Согревается;

- Увлажняется, поэтому воздух в легких насыщен водяными парами на 100%, независимо от влажности атмосферного воздуха;

- Очищается, благодаря наличию реснитчатого эпителия и бокалоподибних клеток, секретирующих слизь (движение ресничек обеспечивает прохождение слизи и осев на поверхности дыхательных путей инородных частиц, микроорганизмов в направлении гортани и глотки, они проглатываются или видхаркуються), часть осев на поверхности дыхательных путей микроорганизмов и частиц обезвреживаются макрофагами.

Кроме того, воздухоносные пути имеют большое количество рецепторов (есть рефлексогенной зоной), что обеспечивает их участие в осуществлении защитных дыхательных рефлексов.

В регуляции величины просвета дыхательных путей (и их сопротивления движению воздуха) принимают участие, главным образом, нервные механизмы. При этом парасимпатические рефлекторные воздействия сопровождаются сокращением гладких мышц сужение дыхательных путей. В гладких мышцах дыхательных путей является - и-адренорецепторы; стимуляция-адренорецепторов сопровождается расслаблением гладких мышц воздухоносных путей и расширением бронхиол, а стимуляция-адренорецепторов - напряженным гладких мышц и сужением бронхов. В гладких мышцах дыхательных путей преобладают-адренорецепторы, поэтому в условиях повышения активности симпатоадреналовой системы просвет дыхательных путей расширяется создаются оптимальные условия для вентиляции легких.

Спирография – это метод оценки состояния легких путем измерения объема и скорости выдыхаемого воздуха. Эта процедура безболезненна, не связана с введением в организм пациента каких-либо медицинских инструментов, может проводиться в амбулаторных условиях и занимает всего несколько минут.

Тест ЖЕЛ (жизненная ёмкость легких):

ЖЕЛ (VC = Vital Capacity) - жизненная ёмкость лёгких (объём воздуха, который выходит из лёгких при максимально глубоком выдохе после максимально глубокого вдоха)

РOвд (IRV = inspiratoryreservevolume) - резервный объём вдоха (дополнительный воздух) - это тот объём воздуха, который можно вдохнуть при максимальном вдохе после обычного вдохавоздух) - это тот объём воздуха, который можно выдохнуть при максимальном выдохе после обычного выдоха

ЕВ (IC = inspiratory capacity) - емкость вдоха - фактическая сумма дыхательного объёма и резервного объёма вдоха (ЕВ = ДО + РОвд)

ОЗЛ (TV = tidal volume) - объём закрытия легких

ФОЕЛ (FRC = functional residual capacity) - функциональная остаточная емкость легких. Это объём воздуха в лёгких пациента, находящегося в состоянии покоя, в положении, когда закончен обычный выдох, а голосовая щель открыта. ФОЕЛ представляет собой сумму резервного объёма выдоха и остаточного воздуха (ФОЕЛ = РОвыд + ОВ). Данный параметр можно измерить с помощью одного из двух способов: разведения гелия или плетизмографии тела. Спирометрия не позволяет измерить ФОЕЛ, поэтому значение данного параметра требуется ввести вручную.

ОВ (RV = residual volume) - остаточный воздух (другое название - ООЛ, остаточный объём лёгких) - это объём воздуха, который остается в лёгких после максимального выдоха. Остаточный объём нельзя определить с помощью одной спирометрии; это требует дополнительных измерений объёма легких (с помощью метода разведения гелия или плетизмографии тела)

ОЕЛ (TLC = total lung capacity) - общая емкость легких (объём воздуха, находящийся в лёгких после максимально глубокого вдоха). ОЕЛ = ЖЕЛ + ОВ

Тест ФЖЕЛ (форсированная жизненная ёмкость легких)

ФЖЕЛ = ФЖЕЛвыд (FVC = forced vital capacity) - (проба Тиффно). Форсированная жизненная ёмкость легких - объём воздуха, выдыхаемый при максимально быстром и сильном выдохе.  ОФВ05 (FEV05 = forced expiratory volume in 0.5 sec) - объём форсированного выдоха за 0,5 секунды  ОФВ1 (FEV1 = forced expiratory volume in 1 sec) - объём форсированного выдоха за 1 секунду - объём воздуха, выдохнутого в течение первой секунды форсированного выдоха. ОФВ3 (FEV3 = forced expiratory volume in 3 sec) - объём форсированного выдоха за 3 секунды ОФВпос = Опос = ОПОС (FEVPEF) - объём форсированного выдоха, при котором достигается ПОС (пиковая объёмная скорость)

МОС25 (MEF25 = FEF75 = forced expiratory flow at 75%) - мгновенная объёмная скорость после выдоха 25% ФЖЕЛ, 25% отсчитываются от начала выдоха МОС50 (MEF50 = FEF50 = forced expiratory flow at 50%) - мгновенная объёмная скорость после выдоха 50% ФЖЕЛ, 50% отсчитываются от начала выдоха МОС75 (MEF75 = FEF25 = forced expiratory flow at 25%) - мгновенная объёмная скорость после выдоха 75% ФЖЕЛ, 75% отсчитываются от начала выдоха СОС25-75 (MEF25-75) - средняя объёмная скорость в интервале между 25% и 75% ФЖЕЛ СОС75-85 (MEF75-85) - средняя объёмная скорость в интервале между 75% и 85% ФЖЕЛ СОС0.2-1.2 - средняя объёмная скорость между 200мл и 1200мл ФЖЕЛ выдоха

ПОС = ПОСвыд = ПСВ (пиковая скорость выдоха) (PEF = peak expiratory flow) - пиковая объёмная скорость выдоха МПП (MMEF = maximal mid-expiratory flow) - максимальный полувыдыхаемый поток ТФЖЕЛ = Ввыд = Твыд (E_TIME = expiratory time) - общее время выдоха ФЖЕЛ ТФЖЕЛвд = Ввд = Твд (I_TIME = inspiratory time) - общее время вдоха ФЖЕЛ ТФЖЕЛ/ТФЖЕЛвд - отношение времени выдоха ко времени вдоха

Тпос = ТПОС (TPEF) - время, необходимое для достижения пиковой объёмной скорости выдоха СТВ (среднее транзитное время) = СПВ (среднее переходное время) = МТТ (mean transition time) - значение этого времени находится в точке, перпендикуляр из которой образует со спирографической кривой две равные по площади фигуры

ФЖЕЛвд (FIVC = FVCin = forced inhaled vital capacity) - форсированная жизненная ёмкость лёгких вдоха ОФВ05вд (FIV05 = forced inspiratory vital capacity in 0.5 sec) - объём форсированного вдоха за 0.5 секунды ОФВ1вд (FIV1 = forced inspiratory vital capacity in 1 sec) - объём форсированного вдоха за 1 секунду  ОФВ3вд (FIV3 = forced inspiratory vital capacity in 3 sec) - объём форсированного вдоха за 3 секунды ПОСвд (PIF = peak inspiratory flow) - пиковая объёмная скорость вдоха ФЖЕЛвд (FIVC = FVCin = forced inspiratory vital capacity) - форсированная жизненная ёмкость вдоха  МОС50вд (MIF50) - мгновенная объёмная скорость в момент достижения 50% объёма ФЖЕЛ вдоха, 50% отсчитываются от начала вдоха

ППТ (BSA = body surface area) - площадь поверхности тела (м.кв.)

ИТ = ОФВ1/ЖЕЛ (FEV1/VC = Index Tiffeneau) - индекс Тиффно ИГ = ОФВ1/ФЖЕЛ (FEV1/FVC = Index Gaenslar) - индекс Генслара ОФВ3/ФЖЕЛ (FEV3/FVC) - отношение ОФВ3 к ФЖЕЛ ОФВ1вд/ФЖЕЛ (FIV1/FVC) - отношение ОФВ1вд к ФЖЕЛ  ОФВ1вд/ФЖЕЛвд (FIV1/FIVC) - отношение ОФВ1вд к ФЖЕЛвд ОФВ1/ОФВ1вд (FEV1/FIV1) - отношение ОФВ1 к ОФВ1вд МОС50/ФЖЕЛ (MIF50/FVC) - отношение мгновенной объёмной скорости в момент достижения 50% объёма ФЖЕЛ выдоха к форсированной жизненной ёмкости лёгких выдоха МОС50/ЖЕЛ (MEF50/VC) - отношение мгновенной объёмной скорости в момент достижения 50% объёма ФЖЕЛ выдоха к жизненной ёмкости лёгких выдоха МОС50/МОС50вд (MEF50/MIF50) - отношение мгновенной объёмной скорости в момент достижения 50% объёма ФЖЕЛ выдоха к аналогичному параметру при вдохе

Авыд (Аех = AEFV) - площадь экспираторной части кривой "поток-объём" Авд (Аin = AIFV) - площадь инспираторной части кривой "поток-объём" А - полная площадь петли поток-объём

Максимальная вентиляция лёгких МВЛ:

МВЛ (MVV = maximal voluntary ventilation) - максимальная вентиляция лёгких (предел вентиляции) - это максимальный объём воздуха, проходящий через лёгкие при форсированном дыхании за одну минуту  ОВ МВЛ (TV MVV) - объём воздуха, проходящий через лёгкие при выполнении теста MVV (МВЛ) за один вдох-выдох. ЧД (RR = respiration rate) - частота дыхания при МВЛ ПСДВ = МВЛ/ЖЕЛ - пропускная способность движения воздуха

Минутный объём дыхания МОД:

МОД (LVV = low voluntary ventilation) - минутный объём дыхания - это объём воздуха, проходящий через лёгкие при обычном дыхании за одну минуту. ОВ МОД = ДО (дыхательный объем, усредненный) = (TV LVV) - объём воздуха, проходящий через лёгкие при выполнении теста МОД (LVV) за один вдох-выдох. ЧД (RR = respiration rate) - частота дыхания при МОД

Эти параметры являются основными. Общее количество измеряемых параметров обычно больше, так как включает в себя различные комбинации основных параметров.

Пост БД обследование:

В этом обследовании измеряются все параметры, указанные выше.

Основные дыхательные шумы.

Везикулярное дыхание.

Везикулярное дыхание – основной дыхательный шум, который прослушивается при аускультации легких здорового человека.

Механизм образования везикулярного дыхания довольно сложен. В основе него звук колебаний стенок альвеол при вхождении в них воздуха. Резонансная частота колебаний альвеол 108-130 герц. К этим звукам примешиваются некоторые низкочастотные составляющие колебаний бронхиол. Общий диапазон частот звуков, образующих везикулярное дыхание от 18 до 360 герц. Так как энергия вдоха у здоровых значительно превышает энергию выдоха, звук везикулярного дыхания слышен на вдохе ( фаза нарастания колебаний) и в начальный период выдоха (фаза угасания колебаний).

Звук везикулярного дыхания напоминает мягкое и протяжное звучание “ффф” и слышен при вдохе и, ослабевая, до середины выдоха. В наиболее “чистом” виде везикулярное дыхание выслушивается в средних отделах легких спереди и сзади, где кортикальный слой альвеол наибольший (до 4-5 см). По паравертебральным линиям, в области верхушек легких, особенно справа, вследствие большей примеси звуков, исходящих из бронхов, дыхание более грубое, сильнее слышен выдох (везикобронхиальное дыхание).

Рекомендуется путем многократной вдумчивой аускультации запомнить звучание везикулярного дыхания у здорового человека в разных точках аускультации легких.

Спектрограмма везикулярного дыхания

РАЗНОВИДНОСТИ ВЕЗИКУЛЯРНОГО ДЫХАНИЯ.

- пуэрильное дыхание.

У детей до 3 лет везикулярное дыхание несколько выше по частоте (до 400-600 герц), жесче, чем у взрослых людей и слышно как на вдохе, так и на выдохе.

Такое дыхание называют пуэрильным. В основе пуэрильного дыхания также лежат колебания альвеол при дыхании, но так как альвеолярный слой у детей относительно тоньше, а бронхи относительно уже, к звуку колебаний альвеол примешивается больше звуков из бронхов. Прослушайте дыхание грудного младенца.

Спектрограмма дыхания грудного ребенка.

- усиленное везикулярное дыхание.

Усиленное везикулярное дыхание возникает при относительной или абсолютной гипервентиляции. При этом увеличивается как энергия колебаний альвеол, так и примесь к ним низкочастотных составляющих звуков из бронхов. Это ведет к усилению звучания вдоха и более продолжительному звучанию выдоха.

- ослабленное везикулярное дыхание.

Ослабленное везикулярное дыхание возникает при относительной или абсолютной гиповентиляции (например, при болезненности при дыхании), а также при синдроме вздутия легкого. При таком синдроме (например, при эмфиземе легкого) альвеолы, эмфизематозные буллы находятся в открытом состоянии и энергия их колебаний во время дыхания ослабевает.

- жесткое везикулярное дыхание

Жесткое везикулярное дыхание возникает при относительном сужении бронхов, изменении их слизистой (при бронхите, бронхиальной астме). Альвеолярная система при этом не изменяется, но усиливается примесь звуков из бронхов.

Жесткое везикулярное дыхание распознается по необычной “жесткой” тембровой окраске везикулярного дыхания и по четкому звучанию не только вдоха, но и выдоха на всем протяжении.

- саккадированное (прерывистое) дыхание.

Саккадированное дыхание может быть физиологическим и патологическим. Причиной т.н. физиологического саккадированного дыхания является легкое ознобление (аускультация в холодном помещении), эмоциональное возбуждение. Причиной патологического саккадированого дыхания является стенозирование бронха.

Саккадированное дыхание аускультируется как прерывистое везикулярное дыхание (ф-ф-ф). В отличии от физиологического саккадированного везикулярного дыхания, которое, как правило лабильно и выслушивается над всей поверхностью легких, патологическое дыхание выслушивается локально и стабильно.

БРОНХИАЛЬНОЕ ДЫХАНИЕ

Вторым основным дыхательным шумом является бронхиальное дыхание. Звук бронхиального дыхания образуется при прохождении воздуха через голосовую щель и затем распространяется по трахее и бронхам.

Бронхиальное дыхание по частоте в несколько раз выше везикулярного дыхания: 700-1400 герц, а у некоторых людей достигает 2000-5000 герц.

Бронхиальное дыхание напоминает грубое звучание “ххх”, слышно на вдохе и выдохе, причем выдох слышен сильнее вдоха. Это связано с тем, что при выдохе сужается голосовая щель.

Спектрограмма бронхиального дыхания

У здорового человека звук бронхиального дыхания можно услышать только при аускультации трахеи (трахеальное дыхание) и иногда (довольно редко) над областью бифуркации, во 2-3 межреберье по паравертебральной линии. В этой области дыхание чаще не бронхиальное, а везикобронхиальное (на вдохе звук везикулярный, а на выдохе с бронхиальным оттенком).

Появление звука бронхиального дыхания в любой другой точке аускультации легких является патологией (!!!). Для появления бронхиального дыхания над проекцией легких необходимо, чтобы кортикальный слой альвеол был патологически изменен и стал способен проводить частоту бронхиального дыхания. Такие условия создаются при заполнении альвеол воспалительной жидкостью (синдром инфильтрата) или сдавлении альвеол (синдром компрессионного ателектаза). Причем, при синдроме инфильтрата бронхиальное дыхание слышно громко (т.н. усиленное бронхиальное дыхание), а при сдавлении альвеол слышно слабо (ослабленное бронхиальное дыхание). Для того, чтобы над поверхностью легких появилось бронхиальное дыхание, участок инфильтрации или уплотнения должен быть не менее 2-3 см в глубину и 3-5 см в диаметре.

Звук бронхиального дыхания (обычно с металлическим оттенком,- “металлическое дыхание”) появляется при бронхо-плевральном свище с открытым пневмотораксом. В этом случае легкое спадается, через бронхиальный свищ звуки с бронхов попадают в плевральную полость, резонируют и приобретают своеобразный металлический оттенок. Кстати, при бронхофонии голос становится гнусавым, что является дополнительным отличием бронхиального дыхания при открытом пневмотораксе от синдрома инфильтрата.

АМФОРИЧЕСКОЕ ДЫХАНИЕ

Амфорическое (полостное) дыхание по существу является разновидностью бронхиального дыхания, но, учитывая его диагностическую значимость, выделяется в отдельную группу

Амфорическое дыхание формируется при образовании в легких полости (каверна, абсцесс, крупный бронхоэктаз) сообщающейся с бронхом. В таком случае, при дыхании звук бронхиального дыхания по бронхам попадает в полость, резонирует, окрашивается многими обертонами и приобретает сходство со звуком, который возникает если дуть в горлышко бутылки (амфоры). Этот звук громкий, сравнительно высокий (от 500 до 5000 герц), с выраженным эхом (объемный), слышен на вдохе, но особенно на выдохе. Тембровая окраска звука амфорического дыхания зависит от величины, формы, поверхности полости. Классическое амфорическое дыхание прослушивается если полость в диаметре более 5 см, гладкостенная, сообщается с крупным бронхом (хорошо дренируется).

При гигантских гладкостенных полостях, расположенных у корня легкого, нередко определяется положительный симптом Винтриха: громкое амфорическое дыхание с открытым ртом резко ослабевает, если больной закрывает рот и переходит на дыхание носом.