Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
статья Смирнова.doc
Скачиваний:
11
Добавлен:
23.02.2015
Размер:
826.88 Кб
Скачать

II. Молекулярные механизмы потери и приобретения генетического материала

II.1. Нуклеотидные последовательности в точках рекомбинации при интеграциях и делециях.

При изучении эволюции микроорганизмов нет возможности исследовать промежуточные формы, — ископаемых остатков геномов не существует. В распоряжении исследователей имеются только современные геномы, которые, однако, содержат определённую информацию о происходивших событиях. Как интеграция привнесённого сегмента ДНК в резидентный геном, так и делеция участка генома — события, которые оставляют «молекулярный след». Таким «следом» являются новые нуклеотидные последовательности, образующиеся в точках рекомбинационного взаимодействия (recombination joints). Анализируя такие «следы» можно сделать вывод о природе взаимодействий, приведших к рекомбинации, за счёт которой в геном попал новый участок ДНК или из генома был удалён какой либо сегмент ДНК. Возможность анализировать «молекулярные следы» рекомбинационных событий появилась совсем недавно благодаря достижениям сравнительной геномики, после того как были полностью сиквенированы геномы многих микроорганизмов, их родственников и делеционных мутантов. Было установлено, что по краям вновь интегрированного сегмента ДНК могут находиться а) IS-элементы, б) гены тРНК (с одной стороны) и гены интеграз (с другой), в) повторяющиеся последовательности, которые входят в состав сайта интеграции интегрона, г) ДНК профагов.

В точках рекомбинационного взаимодействия, на месте делетированнного материала обнаруживаются IS-элементы (МГЭ) или повторяющиеся последовательности.

Следовательно, внедрения генетического материала и делеции обусловлены наличием в геномах перечисленных последовательностей, являющихся сайтами предпочтительной рекомбинации.

II.2. Сайты интеграции (tРнк, интегроны, is-элементы, короткие повторы).

Почему рекомбинация в этих сайтах предпочтительна?

Одним из доминирующих механизмов внедрения нового генетического материала (например, геномных островов, островов патогенности) в ДНК-мишень является интеграция в сайты, находящиеся в генах тРНК и тмРНК. Гены тРНК имеют три сайта интеграции, два из которых симметричны, а один — нет. Интегразы, связывающиеся с этими сайтами, строго специфичны, т.е. взаимодействуют либо с симметричными, либо с несимметричными сайтами [82, 115].

В эти сайты могут интегрировать геномные острова, плазмиды, геномы умеренных бактериофагов. Существует много примеров использования генов тРНК в качестве сайтов интеграции, но в данном контексте в качестве фрагментов интегрировавших по этому механизму, можно привести геномные острова B. henselae и уникальные участки генома B. quintana. 62% генетического материала B. henselae, отсутствующего у B. quintana, входит в состав 4 сегментов генома, 3 из которых являются геномными островами, а 4-й — профагом. Каждый из островов B. henselae фланкирован с одной стороны генами лейциновой тРНК, а сдругой — генами интеграз. На месте этих островов и профага в геноме B. quintana находятся некодирующие остатки генома профага. Дополнительный небольшой уникальный для B. henselae участок генома содержит последовательность, сходную с островом патогенности Photorabdus luminescens. (Photorabdus luminescens является симбионтом нематод, которые инфицируют насекомых — вредителей растений; нематоды отрыгивают бактерий, которые, продуцируя токсин, убивают насекомых). Участки генома, уникальные для B. quintana, содержат ген, гомологичный гену эффектора YopP иерсиний и ген секреторного белка для гемолитического токсина азотфиксирующей почвенной бактерии Sinorhizobium meliloti. Оба этих гена сцеплены с генами тРНК [9].

Анализ сиквенированных геномов показывает, что локализация генов тРНК имеет определённую специфичность. Так, у энтеробактерий эти гены относительно равномерно распределены по всему геному, тогда как у бацилл они сгруппированы в блоки и расположены в первой трети генома. Соответственно, районы интеграции генетического материала в гены тРНК у бактерий разных таксономических групп будут отличаться.

Интегроны представляют собой сложные генетические элементы, предназначенные для захвата генов и содержащие ген интегразы, сайт интеграции для привносимых фрагментов ДНК и промотор для экспрессии генов (Рис.3). Сайт интеграции содержит инвертированные повторы, которые узнаются интегразой. Особенно интересно то, что интегроны очень древние генетические элементы, и хотя чаще всего они захватывают кассеты с генами антибиотикоустойчивости, сами интегроны сформировались задолго до эры применения антибиотиков [см. 91-93] Кроме генов антибиотикоустойчивости [64, 90] кассеты, захватываемые интегронами и суперинтегронами, могут содержать гены, кодирующие факторы патогенности [106, 74], гены метаболизма [19, 91], или гены, кодирующие рестрикционные ферменты [91, 103]. Различные геннные кассеты содержат интеграционные сайты (attC), которые не гомологичны друг другу. В большинстве исследованных случаев интегроны бактерий различных видов, даже принадлежащих одному роду, содержат разные генные кассеты. Локализация интегронов (например, в геномах бактерий рода Vibrio) может быть различной, но очевидно наличие предпочтительных сайтов [92]. Перечисленные данные с очевидностью указывают на предетерминированность захвата генетического материала в определённые специализированные сайты (платформы интегронов) за счёт сложного и древнего механизма сайт-специфической рекомбинации.

Рис. 3. Структура (А) и работа (Б) интегрона.

 

 

Интеграция многих МГЭ зависит от наличия в сайте-мишени повторяющихся последовательностей. Так, например, предпочтительной мишенью (сайтом узнавания и связывания) для транспозаз в геномах микроорганизмов различных видов оказались внегенные повторяющиеся палиндромы REP [101]. Однако в большинстве случаев специфичность интеграции хотя и зависит от нуклеотидной последовательности мишени, но не является строгой [62]. Итак, МГЭ могут интегрировать в сайты, образованные повторами, из которых состоят также сайты интеграции в генах тРНК и в интегронах. Остаётся выяснить, как распределяются в геномах сами повторы.