Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции 1.doc
Скачиваний:
34
Добавлен:
22.02.2015
Размер:
1.94 Mб
Скачать
        1. Процедурные типы

 Синтаксис

Тип "процедура":

PROCEDURE[(Список формальных параметров>)]

Тип "функция":

FUNCTION[(Формальне параметры>)]:<Тип результата>

Рассмотрим использование процедурных типов на примерах. Предположим, что необходимо приближенно (численно) проинтегрировать некоторую функцию f(x) на отрезке [a,b] путем разбиения отрезка наn частей и приближенной замены интеграласуммойплощадей прямоугольников, как показано на следующем рисунке.

Напишем функцию для численного интегрирования, к примеру, функции .

 Функция Integr

FUNCTION Integr(a,b:Real;n:Integer):Real;

VAR

i:Integer;

dx,x:Real;

BEGIN

dx:=(b-a)/n;

Result:=0;

FOR i:=0 TO n-1 DO

BEGIN

x:=dx*I+dx/2;

Result:=Result+(Sin(x)+x/2)*dx;

END;

END;

Предположим теперь, что в программе необходимо интегрировать несколько функций, причем для вычисления значений некоторых из них вполне может понадобиться писать целую отдельную программу. Что делать в этом случае? Написать несколько почти одинаковых функций для каждого случая? Необходимо заметить, что в реальной задаче могут использоваться и значительно более сложные вычисления, для которых может понадобиться написание достаточно объемной программы. Придется несколько раз продублировать эту программу, меняя в ней лишь небольшой участок. В таких случаях можно использовать процедурные типы. Перепишем вышеприведенную функцию Integr с использованием процедурных типов.

 Функция Integr

TYPE

Func=FUNCTION (x:Real):Real;

FUNCTION Integr(f:Func;a,b:Real;n:Integer):Real;

VAR

i:Integer;

dx:Real;

BEGIN

dx:=(b-a)/n;

Result:=0;

FOR i:=0 TO n-1 DO

Result:=Result+f(dx*I+dx/2)*dx;

END;

Теперь в качестве параметров передаются не только отрезок интегрирования и количество участков, но и функция, которую необходимо интегрировать. Таким образом, теперь можно интегрировать любую функцию без необходимости многократно дублировать код.

 Пример использования функции Integr

FUNCTION f1(x:Real):Real;

BEGIN

f1:=Sin(x)+x/2;

END;

∙ ∙ ∙

Writeln(Integr(f1,1,5,1000));

        1. Тип указатель

 Синтаксис

^<Тип>

Переменная типа указатель содержит адрес некоторой переменной описанного типа. Рассмотрим на примере тип указатель, а также оператор взятия адреса @ и оператор разыменования указателя ^.

 Пример

VAR

A:Word;

B:Integer;

P:^Integer;

∙ ∙ ∙

A:=10;

B:=1000;

P:=@B;

P^:=A; {Bпринимает значение 10 }

P:=@A; { Ошибка, если включена опция "Типизированный оператор @" (по умолчанию эта опция выключена) }

После выполнения первых трех операторов присваивания переменные примут значения, приведенные на следующем рисунке (расположение переменных в памяти взято для примера).

        1. Нулевой указатель

Записывается NIL и означает, что переменная типа указатель не указывает ни на что. Возвращаясь к процедурным типам, скажем, что значениеNIL можно присваивать и переменным такого типа (так как, по сути, они являются указателями и содержат адреса соответствующих процедур и функций). В данном случае это будет означать, что переменная не указывает ни на какую процедуру или функцию. Чтобы определить адрес процедуры или функции, на которую указывает переменная процедурного типа (например, для сравнения сNIL), нужно использовать оператор взятия адреса @.

 Пример (продолжение примера из параграфа 5.3)

PROCEDURE Test(f,G:Func); { G – первообразная f }

BEGIN

Writeln('Приближенное значение интеграла: ',Integr(f,1,5,1000));

IF @G<>NIL THEN

Writeln('Точное значение интеграла: ',G(5)-G(1));

END;

FUNCTION G1(x:Real):Real;

BEGIN G1:=Sqr(x)/4-Cos(x) END;

{ Первообразная функции }

FUNCTION f2(x:Real):Real;

BEGIN f2:=Sin(x)/x END;

{ Интеграл – не берущийся }

∙ ∙ ∙

Test(f1,G1); { Напечатаются приближенное и точное значения }

Test(f2,NIL); { Напечатается только приближенное значение }