Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы на билеты it_shestakov.docx
Скачиваний:
13
Добавлен:
12.02.2015
Размер:
193.57 Кб
Скачать

[Править]Преимущества электронной коммерции

[править]Для организаций

  • Глобальный масштаб

  • Сокращение издержек

  • Улучшение цепочек поставок

  • Бизнес всегда открыт (24/7/365)

  • Персонализация

  • Быстрый вывод товара на рынок

  • Низкая стоимость распространения цифровых продуктов

[править]Для потребителей

  • Повсеместность

  • Анонимность

  • Большой выбор товаров и услуг

  • Персонализация

  • Более дешевые продукты и услуги

  • Оперативная доставка

  • Электронная социализация

[править]Для общества

  • Широкий перечень предоставляемых услуг (например, образование, здравоохранение, коммунальное обслуживание)

  • Повышение уровня жизни

  • Повышение национальной безопасности

  • Уменьшение «цифрового» разрыва

  • Онлайн продажа/заказ товаров/услуг уменьшает автомобильный трафик и снижает загрязнение окружающей среды

[править]Недостатки электронной коммерции

[править]Для организаций

  • Возможные сомнения сторон по поводу принадлежности того или иного проекта к компании (негативная анонимность)

  • Некоторая сложность в ведении и узаконивании деятельности предприятия в интернете

[править]Для потребителей

  • Недоверие потребителя к услугам, продаваемым посредством интернета[4]

  • Невозможность «потрогать» товар руками

  • Ожидание доставки приобретенной продукции

[править]Для общества

  • Привлекательная платформа для мошенничества (снижение уровня сетевой безопасности)

  • Вытеснение с рынка коммерческих оффлайн предприятий

[править]Для государства

  • Недополучение в бюджет государства налоговых выплат при ведении «серых» схем учета

[править]Электронная коммерция в мире

По данным агентства Invesp.com, в 2011 году объем продаж в сфере электронной коммерции в мире составляет 680,6$ млрд долларов США. По прогнозам этого агентства, данная сумма будет только расти, и к 2015 году достигнет отметки в 1,5 трлн. долларов США.[5]

[править]Электронная коммерция в России

По данным исследовательского агентства Data Insight, в 2010 году объем российского рынка электронной коммерции достигнет 240 млрд рублей. Таким образом, на долю онлайн-продаж будет приходиться 1,6 % от общего объема продаж всей российской розницы (в среднем по ЕС этот показатель составляет 5,7 %, а в США — 6,4 %). По отдельным товарным группам картина несколько иная. В частности, через Интернет продается, около 12-14 % бытовой техники, электроники и книг.[6]

На 2011 год в России насчитывается порядка 30 000 интернет-магазинов, большая часть из которых находится в регионах страны. По статистике, за год в России закрывается порядка 10% интернет-магазинов, но вместо них открывается 20-30% новых. Сам рынок электронной коммерции в РФ прогнозирует свой рост в 2 раза за ближайшие четыре года.

Инфраструктура систем электронной коммерции

Основными элементами инфраструктуры систем электронной коммерции являются:

Электронный магазин представляет собой реализованное коммерсантом представительство в сети Интернет на основе создания web-сервера. Главная цель такого предприятия заключается в обеспечении продажи товаров и оказании услуг другим пользователям Интернета.

Специальное программное обеспечение. К нему относятся различные языки программирования, шаблоны для ввода и вывода данных, поддержка многоязычных текстов, дизайн и способы изготовления web-страниц, специальное программное обеспечение и др.

Система, обеспечивающая безопасность актов купли-продажи. Известно достаточное количество способов защиты коммуникаций в сети Интернет. Популярной становится криптография с открытым ключом. В настоящее время нет единого надежного способа защиты. Поэтому выбор наилучшего варианта должен быть поручен специалистам.

Юридическое обеспечение. Организация электронной коммерции и торговли базируется не только на использовании традиционных юридических норм и правил, но и предусматривает разработку новых специализированных институтов и процедур. В системе электронной коммерции не всегда возможно заключение традиционного письменного договора, заключенного на бумаге, поэтому для преодоления такого препятствия и обеспечения нормального функционирования электронной коммерции Комиссией ООН по праву и международной торговле в 1996г. был разработан примерный свод правил - Типовой закон «Об электронной коммерции». В России приоритет принадлежит российскому Закону об электронной цифровой подписи.

Специальные платежные системы. В настоящее время для проведения платежей через Интернет используются различные карточные технологии, которые являются слабо защищенными. Для устранения этих недостатков в настоящее время разрабатываются специальные электронные деньги, которые позволили бы осуществлять платежи через Интернет анонимно.

На сегодня известно несколько десятков различных платежных систем. Все их разнообразие можно разделить на четыре основные группы:

1. Протоколы сеанса связи, обеспечивающие безопасную передачу данных

2. Системы, основывающиеся на использовании пластиковых карт

3. Платежные системы, ориентированные на применение смарт-карт

4. Электронные наличные

Системы доставки товаров и услуг. Доставка товаров и услуг, приобретенных в электронных магазинах, может осуществляться двумя основными способами: с использованием традиционных транспортных и почтовых средств, или с помощью непосредственного использования электронных каналов связи (например, поставка программных продуктов, электронных изданий журналов, газет, музыкальных произведений)

Служба маркетинга. Главные задачи маркетинга решают отдел продаж, ценообразования, рекламы и дизайна собственных web-страниц. Маркетинговую деятельность в сети Интернет условно можно разделить на два основных вида:

1. Осуществление деятельности в качестве обычного пользователя Интернетом

2. Принятие наиболее активного и непосредственного участия в реализации возможностей сети

Отдел дизайна web-страниц, web-серверов. Содержание работы сотрудников данного отдела заключается не только во внешнем оформлениино ирешении задач удобства навигации, внимания к покупателю, сервисной поддержки и т. д.

Клиенты - покупатели и ли потребители услуг

Финансовые институты - организации, которые осуществляют коммерческие или торговые операции посредством Интернет

Правительство - выступает в качестве гаранта, который обеспечивает законность операций в системе электронной коммерции, посредством разработки соответствующих документов.

Электронный магазин - это своеобразная торговая витрина, обеспечивающая дружественный интерфейс, предлагающий товары или услуги.

Электронный универмаг - аналог обычного универмага, в который различные фирмы поставляют свой товар.

Электронный киоск- это аппаратно-программный комплекс, подключенный к Интернету и предоставляющий пользователю интерактивный доступ к информации и другим товарам и услугам. Типичный киоск состоит из компьютера с жестким диском, клавиатурой, CD-ROM,монитором с видео- и аудиокартами.

Электронный аукцион- аналог обычного аукциона, который базируется на современных Интернет-технологиях. Вокруг аукциона обычно образуется некоторое сообщество людей, объединенных общими интересами (пример-биржа). В наибольшей степени для аукционной сделки подходят компьютеры, устаревшие и уцененные товары, высокотехнологичные товары, коллекционные товары.

32. Понятие и структура информационного процесса. Модели информационных процессов передачи, обработки, накопления данных.

Понятие и структура информационного процесса

Под информационным процессом понимается процесс взаимодействия между двумя объектами материального мира, в результате которого возникает информация.

Сообщение, отображающее информацию, всегда представляется в виде сигнала. Под сигналом понимается изменение состояния некоторого объекта.

Последующая процедура, связанная с передачей - это обратная преобразование сообщения в сигналы. Мы уже неоднократно упоминали назначение информационных процессов - сбор, подготовка, передача, хранение, накопление, обработка, представление информации.

Информация, переданная в систему ИТ, превращается в данные, а данные отображаются в виде некоторого носителя - сигнала, то есть непрерывная цепь преобразований: материальный объект → сигнал → информация → данные → сигнал.

Сигнал, возникающий как переносчик данных, должен обладать свойствами, соответствующими рассматриваемому информационному процессу. При подготовке данных сигнал, отображающий данные - это символы, соответствующие принятой системе классификации и кодирования.

При передаче в качестве сигнала выступает переносчик. Воздействуя на параметры переносчик (модулируя) можно осуществить передачу данных на требуемое расстояние по выбранному каналу.

При хранении данные отображаются сигналом, фиксируемым в виде состояния физической среды (ячеек памяти) вычислительных средств.

Обобщенная схема технологического процесса обработки информации

При производстве информационного продукта исходный информационный ресурс в соответствии с поставленной задачей подвергается в определенной последовательности различным преобразованиям. Динамика этих преобразований отображается в протекающих при этом информационных процессах. Таким образом, информационный процесс - это процесс преобразования информации. В результате информация может изменить и содержание, и форму представления.

Управляющие воздействия формируются на основе накопленной и функционирующей в системе управления информации, а также поступающих по каналам прямой и обратной связи сведений из внешней среды.

Таким образом, важнейшая функция любой системы управления - получение информации, выполнение процедур по ее обработке с помощью заданных алгоритмов и программ, формирование на основе полученных сведений управленческих решений, определяющих дальнейшее поведение системы.

Поскольку информация фиксируется и передается на материальных носителях, необходимы действия человека и работа технических средств по восприятию, сбору информации, ее записи, передаче, преобразованию, обработке, хранению, поиску и выдаче. Эти действия обеспечивают нормальное протекание информационного процесса и входят в технологию управления. Они реализуются технологическими процессами обработки данных с использованием электронных вычислительных машин и других технических средств.

При обработке данных формируются четыре основных информационных процесса: сбор и регистрация, обмен, обработка, накопление и хранение информации. Рассмотрим их модели.

Сбор и регистрация информации

Сбор и регистрация информации происходят по-разному и в различных объектах.

Процесс перевода информации в выходные данные в технологических системах управления может быть полностью автоматизирован, так как для сбора информации о состоянии производственной линии применяются разнообразные электрические датчики, которые уже по своей природе позволяют проводить преобразования физических параметров, вплоть до превращения их в данные, записываемые на машинных носителях информации, без выхода на человеческий уровень представления. Это оказывается возможным благодаря относительной простоте и однозначности физической информации, снимаемой датчиками (давление, температура, скорость и т.п.).

В организационно-экономических системах управления информация, осведомляющая человека о состоянии объекта управления семантически сложна, разнообразна и ее сбор не удается автоматизировать. Поэтому в таких системах информационная технология на этапе превращения исходной (первичной) информации в данные в основе своей остается ручной. На рис.3.2 приведена последовательность фаз процесса преобразования информации в данные в информационной технологии организационно-экономических систем управления.

Сбор информации состоит в том, что поток осведомляющей информации, поступающей от объекта управления, воспринимается человеком и переводится в документальную форму (записывается на бумажный носитель информации). Составляющими этого потока могут быть показания приборов (например, пробег автомобиля по спидометру), накладные, акты, ордера, ведомости, журналы, описи и т.д.

Для перевода потока осведомляющей информации в автоматизированный контур информационной технологии необходимо собранную информацию передать в места ее ввода в компьютер, так как часто пункты получения первичной информации от них пространственно удалены. Передача осуществляется, как правило, традиционно, с помощью курьера, телефона.

Собранная информация для ввода должна быть предварительно подготовлена, поскольку модель предметной области, заложенная в компьютер, накладывает свои ограничения на состав и организацию вводимой информации. В современных информационных системах ввод информации осуществляется по запросам программы, отображаемым на экране дисплея, и часто дальнейший ввод приостанавливается, если оператором проигнорирован какой-либо важный запрос. Очень важными на этапах подготовки информации и ввода являются процедуры контроля.

Контроль подготовленной и вводимой информации направлен на предупреждение, выявление и устранение ошибок, которые неизбежны в первую очередь из-за так называемого "человеческого фактора". Человек устает, его внимание может ослабнуть, кто-то может его отвлечь - в результате возникают ошибки. Ошибки при сборе данных и подготовке информации могут быть и преднамеренными. Любые ошибки приводят к искажению вводимых данных, к их недостоверности, а значит, к неверным результатам обработки и в конечном итоге к ошибкам в управлении системой. При контроле собранных данных и подготовленной информации применяют совокупность приемов, как ручных, так и формализованных, направленных на обнаружение ошибок.

Вообще процедуры контроля полноты и достоверности информации и данных используются при реализации информационных процессов повсеместно и могут быть подразделены на визуальные, логические и арифметические.

Визуальный метод широко используется на этапе сбора и подготовки начальной информации и является ручным. При визуальном методе производится зрительный просмотр документа в целях проверки полноты, актуальности, подписей ответственных лиц, юридической законности и т.д.

Логический и арифметический, являясь автоматизированными методами, применяются на последующих этапах преобразования данных.

Логический метод контроля предполагает сопоставление фактических данных с нормативными или с данными предыдущих периодов обработки, проверку логической непротиворечивости функционально-зависимых показателей и их групп и т.д.

Арифметический метод контроля включает подсчет контрольных сумм по строкам и столбцам документов, имеющих табличную форму, контроль по формулам, признакам делимости или четности, балансовые методы, повторный ввод и т.п.

Для предотвращения случайного или намеренного искажения информации служат и организационные, и специальные мероприятия. Это четкое распределение прав и обязанностей лиц, ответственных за сбор, подготовку, передачу и ввод информации в системе информационной технологии. Это и автоматическое протоколирование ввода, и обеспечение санкционированного доступа в контур ИТ.

В настоящее время в нашей стране, как и во всем мире, персональные компьютеры все шире применяются на рабочих местах служащих, ответственных за сбор, подготовку и предварительный контроль первичной информации. В этом случае используются автоматизированные подготовка и контроль собранной необработанной информации и, таким образом, фазы подготовки и ввода объединяются.

Таким образом, после сбора, подготовки, контроля и ввода исходная информация (документы, модели, программы) превращается в данные, представленные машинными (двоичными) кодами, которые хранятся на машинных носителях и обрабатываются техническими средствами информационной технологии.

Передача информации

Информационный процесс обмена предполагает обмен данными между процессами информационной технологии. Из рисунка 1 видно, что процесс обмена связан взаимными потоками данных со всеми информационными процессами на уровне переработки данных.

Передача информации осуществляется различными способами: с помощью курьера, пересылка по почте, доставка транспортными средствами, дистанционная передача по каналам связи, с помощью других средств коммуникаций.

При дистанционной передаче по каналам связи (рис. 3.3) можно выделить два основных типа процедур. Это процедуры передачи данных по каналам связи и сетевые процедуры, позволяющие осуществить организацию вычислительной сети. Процедуры передачи данных реализуются с помощью операции кодирования - декодирования, модуляции - демодуляции, согласования и усиления сигналов. Процедуры организации сети включают в себя в качестве основных операции по коммутации и маршрутизации потоков данных (трафика) в вычислительной сети. Процесс обмена позволяет, с одной стороны, передавать данные между источником и получателем информации, а с другой - объединять информацию многих ее источников.

Дистанционная передача по каналам связи сокращает время передачи данных, однако, для ее осуществления необходимы специальные технические средства, что удорожает процесс передачи. Предпочтительным является использование технических средств сбора и регистрации, которые, собирая автоматически информацию с установленных на рабочих местах датчиков, передают ее в ЭВМ для последующей обработки, что повышает ее достоверность и снижает трудоемкость.

Дистанционно может передаваться как первичная информация с мест ее возникновения, так и результатная в обратном направлении. В этом случае результатная информация фиксируется различными устройствами: дисплеями, табло, печатающими устройствами. Поступление информации по каналам связи в центр обработки в основном осуществляется двумя способами: на машинном носителе или непосредственно вводом в ЭВМ при помощи специальных программных и аппаратных средств. Дистанционная передача информации с помощью современных коммуникационных средств постоянно развивается и совершенствуется. Особое значение этот способ передачи информации имеет в многоуровневых межотраслевых системах, где применение дистанционной передачи значительно ускоряет прохождение информации с одного уровня управления на другой и сокращает общее время обработки данных.

Модель обмена данными включает в себя формальное описание процедур, выполняемых в вычислительной сети: передачи, маршрутизации, коммутации. Именно эти процедуры и составляют информационный процесс обмена. Для качественной работы сети необходимы формальные соглашения между ее пользователями, что реализуется в виде протоколов сетевого обмена. В свою очередь, передача данных основывается на моделях кодирования, модуляции, каналов связи. На основе моделей обмена производится синтез системы обмена данными, при котором оптимизируются топология и структура вычислительной сети, метод коммутации, протоколы и процедуры доступа, адресации и маршрутизации.

В подсистему обмена данными входят комплексы программ и устройств, позволяющих реализовать вычислительную сеть и осуществить по ней передачу и прием сообщений с необходимыми скоростью и качеством.

Физическими компонентами подсистемы обмена служат устройства приема - передачи (модемы, усилители, коммутаторы, кабели, специальные вычислительные комплексы, осуществляющие коммутацию, маршрутизацию и Доступ к сетям). Программными компонентами подсистемы являются программы сетевого обмена, реализующие сетевые протоколы, кодирование - декодирование сообщений и др.

Обработка информации

Обработка информации производится на ПЭВМ, как правило, децентрализовано, в местах возникновения первичной информации, где организуются автоматизированные рабочие места специалистов той или иной управленческой службы (отдела материально-технического снабжения и сбыта, отдела главного технолога, конструкторского отдела, бухгалтерии, планового отдела и т.п.). Обработка, однако, может производиться не только автономно, но и в вычислительных сетях, с использованием набора ПЭВМ программных средств и информационных массивов для решения функциональных задач.

Процесс обработки данных связан с преобразованием данных и их отображением.

Модель обработки данных включает в себя формализованное описание процедур организации вычислительного процесса, преобразования данных и отображения данных. Под организацией вычислительного процесса понимается управление ресурсами компьютера (память, процессор, внешние устройства) при решении задач обработки данных. Эта процедура формализуется в виде алгоритмов и программ системного управления компьютером. Комплексы таких алгоритмов и программ получили название операционных систем.

Операционная система (ОС) - комплекс программ, организующих вычислительный процесс в вычислительной системе.

Хранение и накопление информации

Хранение и накопление информации вызвано многократным ее использованием, применением условно-постоянной, справочной и других видов информации, необходимостью комплектации первичных данных до их обработки.

Назначение технологического процесса накопления данных состоит в создании, хранении и поддержании в актуальном состоянии информационного фонда, необходимого для выполнения функциональных задач системы управления. Хранение и накопление информации осуществляется в информационных базах в виде информационных массивов, где данные располагаются по установленному в процессе проектирования порядку.

33. Проблема защиты информации от искажения в процессе передачи. Роль памяти, знаний и технологий в процессе обработки информации.

Проблемы защиты информации от искажения при ее передаче по каналам связи в условиях естественных помех возникли давно. Наиболее исследованным является случай, когда рассматриваются сообщения, элементы которых могут принимать два значения (обычно 0 и 1), и в качестве помехи рассматривается инверсия элемента сообщения (превращение 0 в 1 или 1 в 0).

Существуют два способа описания помех: вероятностный и теоретико-множественный. В первом случае задаются вероятности искажения символов. Обычно, рассматривают симметричный канал связи, в котором вероятности искажения символов одинаковы. Во втором случае задается максимальное число искаженных символов в принятом сообщении.

Вопросами построения по сообщениям и максимальному числу искажений символов последовательностей, позволяющих восстановить исходные сообщения или просто установить факт наличия или отсутствия ошибок, занимается теория кодирования. Эти последовательности называют кодами сообщений.

Различают диагностические и самокорректирующиеся коды. Диагностический код позволяет ответить на вопрос о наличии или отсутствии ошибок в принятом сообщении. При использовании самокорректирующихся кодов происходит восстановление посланного сообщения. Отметим, что при одном и том же числе допустимых искажений построение самокорректирующихся кодов является существенно более сложной задачей.

При кодировании к сообщению добавляются дополнительные разряды, которые называются корректировочными, что приводит к избыточности.

Для построения диагностического или самокорректирующегося кода задаются два параметра: длина сообщения и максимальное число искажений символов, при котором гарантировано обнаружение или исправление искажений.

Простейшим диагностическим кодом является код, позволяющий обнаружить одну ошибку. При его построении используется проверка на четность числа единичных компонент принятого сообщения. Этот код имеет один корректировочный разряд, который добавляют к исходному сообщению. Корректировочный разряд полагают равным 0 (равным 1), если число единичных компонент исходного сообщения четно (нечетно). При получении сообщения вычисляют сумму компонент. Нетрудно проверить, что четность этой суммы является признаком неискажения сообщения. (Напомним, что в канале происходит не более одного искажения.) Простота этого кода объясняет его применения при передаче информации даже в настоящее время.

Под несанкционированным доступом будем понимать использование информации лицом, не имеющим на это право. Для борьбы с этим применяются системы паролей или шифрование информации.

Эффективная защита информации от несанкционированного изменения, в том числе и подмены, в настоящее время осуществляется с использованием криптографических методов.

Защиту информации от сбоев в работе технических и программных средств обеспечивают разработчики этих средств и администраторы, задачей которых является разработка и обеспечение протоколов взаимодействия пользователей.

Попытка нарушения информационной безопасности называется угрозой. Различают угрозы случайные и преднамеренные. Преднамеренные угрозы обычно направлены на системы обработки данных (СОД). Под объектом защиты понимается компонент системы, в котором находится или может находиться интересующая злоумышленника информация, а под элементом защиты – эта информация.

Основными факторами, которые могут привести к нарушению информации, являются:

1. качественная и количественная недостаточность СОД,

2. сбои и отказы в работе аппаратуры,

3. ошибки персонала,

4. злоумышленные действия,

5. стихийные явления.

Основными источниками, которые могут привести к нарушению информации, являются люди, модели, алгоритмы и программы, технические устройства, информационные технологии, внешняя среда.

Различают следующие виды нарушения информации:

· нарушение физической целостности,

· несанкционированное получение,

· несанкционированное размножение,

· несанкционированное изменение (модификация).

Объектами защиты информации в Системы Обработки Данных могут быть:

· ПК и рабочие станции компьютерной сети,

· узлы связи,

· хранилища носителей информации,

· средства документирования информации,

· сетевое оборудование и внешние каналы связи,

· накопители и носители информации.

Для обеспечения эффективной защиты информационных систем при их проектировании предусматривается разработка компоненты - системы защиты информации. Эта компонента должна быть интегрированной и при ее создании решаются следующие задачи:

· разработка концепции защиты,

· разработка и построение многоуровневой системы защиты информации,

· контроль функционирования системы и ее адаптация к изменяющимся условиям, к появлению новых возможных угроз.

Концепция защиты включает в себя:

· учет специфики объекта (местонахождение, режимы работы, используемые информационные технологии),

· анализ возможных угроз с оценкой потерь,

· анализ технических характеристик устройств и систем защиты информации

· рассмотрение вариантов реализации системы с учетом финансовых затрат,

· разработка организационно-распорядительных документов.

Перечислим основные принципы построения систем защиты информации:

1. системность (необходимость учета всех элементов, условий и факторов, существенно влияющих на безопасность системы),

2. комплексность (согласованное применение разнородных средств для перекрытия всех существенных каналов реализации угроз и ликвидации слабых мест на стыках компонентов системы),

3. непрерывность (принятие соответствующих мер на всех этапах жизненного цикла защищаемой информационной системы),

4. разумная достаточность -

5. открытость используемых классов алгоритмов и механизмов защиты (конечно, пароли, ключи и т.п. являются секретными). Открытость. Исходный код всех версий программ кодирования доступен в открытом виде. Любой эксперт может убедиться в том, что в программе эффективно реализованы криптоалгоритмы. Так как сам способ реализации известных алгоритмов был доступен специалистам, то открытость повлекла за собой и другое преимущество - эффективность программного кода.

6. гибкость управления и применения,

7. простота применения защитных мер и средств (законный пользователь не должен иметь специализированных знаний).

При создании систем защиты информации используются различные комплексы средств:

· организационно-распорядительные,

· технические,

· программно-аппаратные,и др.

Организационно-распорядительные средства защиты заключаются в регламентации доступа к информационным и вычислительным ресурсам, функциональным процессам СОД, к регламентации деятельности персонала и т.п. Целью этих средств является наибольшее затруднение или исключение возможности реализации угроз безопасности.

Технические средства защиты используются для создания вокруг объекта и элементов защиты замкнутой среды (затруднение доступа к объекту). В их состав входят следующие мероприятия:

· установка физической преграды (кодовые замки, охранная сигнализация – звуковая, световая, визуальная с возможностью записи на видеопленку),

· ограничение электромагнитного излучения (экранирование помещений металлическими листами или сетками),

· обеспечение автономными источниками питания оборудования, обрабатывающего ценную информацию,

· применение жидкокристаллических или плазменнных дисплеев и струйных и плазменных принтеров с низким уровнем электромагнитного и акустического излучения,

· использование индивидуальных средств защиты аппаратуры в виде кожухов, крышек и т.п. с установкой средств контроля вскрытия аппаратуры.

Программные и программно-аппаратные средства и методы защиты широко используются для защиты информации в ПК и компьютерных сетях. Они осуществляют

разграничение и контроль доступа к ресурсам;

регистрацию и анализ протекающих процессов, событий, пользователей;

предотвращают возможные деструктивные воздействия на ресурсы;

осуществляют криптографическую защиту информации, идентификацию и аутентификацию пользователей и т.п.

В программно-аппаратных средствах защиты информации секретные ключи и алгоритмы реализованы в виде небольших технических устройств, подключаемых к компьютеру. Это существенно затрудняет их копирование (в отличие от дискет).

Технологические средства защиты информации органично встраиваются в технологические процессы обработки информации. К ним относятся:

· создание архивных копий носителей,

· сохранение обрабатываемых данных во внешней памяти компьютера,

· регистрация пользователей в журналах,

· автоматическая регистрация доступа пользователей к ресурсам,и т.п.

К правовым и морально-этическим средствам защиты информации относятся действующие законы, нормативные акты, регламентирующие правила обращения с информацией и ответственность за их нарушение; нормы поведения, соблюдение которых способствует защите информации.

К лицам, нарушающим эти законы, могут применяться различные меры наказания, вплоть до лишения свободы сроком до 5 лет.

34. Методы и системы искусственного интеллекта (ИИ). Основные компоненты системы ИИ. Примеры применения систем ИИ в управлении, бизнесе и финансах.

Модели и методы исследований

[править]Символьное моделирование мыслительных процессов

Основная статья: Моделирование рассуждений

Анализируя историю ИИ, можно выделить такое обширное направление как моделирование рассуждений. Долгие годы развитие этой науки двигалось именно по этому пути, и теперь это одна из самых развитых областей в современном ИИ. Моделирование рассуждений подразумевает создание символьных систем, на входе которых поставлена некая задача, а на выходе требуется её решение. Как правило, предлагаемая задача уже формализована, то есть переведена в математическую форму, но либо не имеет алгоритма решения, либо он слишком сложен, трудоёмок и т. п. В это направление входят: доказательство теоремпринятие решений и теория игрпланирование и диспетчеризацияпрогнозирование.

[править]Работа с естественными языками

Основная статья: Обработка естественного языка

Немаловажным направлением является обработка естественного языка[13], в рамках которого проводится анализ возможностей понимания, обработки и генерации текстов на «человеческом» языке. В рамках этого направления ставится цель такой обработки естественного языка, которая была бы в состоянии приобрести знание самостоятельно, читая существующий текст, доступный по Интернету. Некоторые прямые применения обработки естественного языка включают информационный поиск (в том числе, глубокий анализ текста) и машинный перевод[14].

[править]Представление и использование знаний

Основная статья: Инженерия знаний

Основная статья: Представление знаний

Направление инженерия знаний объединяет задачи получения знаний из простой информации, их систематизации и использования. Это направление исторически связано с созданием экспертных систем — программ, использующих специализированные базы знаний для получения достоверных заключений по какой-либо проблеме.

Производство знаний из данных — одна из базовых проблем интеллектуального анализа данных. Существуют различные подходы к решению этой проблемы, в том числе — на основе нейросетевой технологии[15], использующие процедуры вербализации нейронных сетей.

[править]Машинное обучение

Основная статья: Машинное обучение

Проблематика машинного обучения[16] касается процесса самостоятельного получения знаний интеллектуальной системой в процессе её работы. Это направление было центральным с самого начала развития ИИ[17]. В 1956 году, на Дартмундской летней конференции, Рей Соломонофф написал отчёт о вероятностной машине, обучающейся без учителя, назвав её: «Индуктивная машина вывода»[18].

Обучение без учителя — позволяет распознать образы во входном потоке. Обучение с учителем включает также классификацию и регрессионный анализ. Классификация используется, чтобы определить, к какой категории принадлежит образ. Регрессионный анализ используется, чтобы в рядах числовых примеров входа/выхода и обнаружить непрерывную функцию, на основании которой можно было бы прогнозировать выход. При обучении агент вознаграждается за хорошие ответы и наказывается за плохие. Они могут быть проанализированы с точки зрения теории решений, используя такие понятия как полезность. Математический анализ машинных алгоритмов изучения — это раздел теоретической информатики, известный как вычислительная теория обучения(англ. Computational learning theory).

К области машинного обучения относится большой класс задач на распознавание образов. Например, это распознавание символоврукописного текстаречианализ текстов. Многие задачи успешно решаются с помощью биологического моделирования (см. след. пункт). Особо стоит упомянуть компьютерное зрение, которое связано ещё и с робототехникой.

[править]Биологическое моделирование искусственного интеллекта

Основная статья: Квазибиологическая парадигма

Отличается от понимания искусственного интеллекта по Джону Маккарти, когда исходят из положения о том, что искусственные системы не обязаны повторять в своей структуре и функционировании структуру и протекающие в ней процессы, присущие биологическим системам. Сторонники данного подхода считают, что феномены человеческого поведения, его способность к обучению и адаптации есть следствие именно биологической структуры и особенностей её функционирования.

Сюда можно отнести несколько направлений. Нейронные сети используются для решения нечётких и сложных проблем, таких как распознавание геометрических фигур или кластеризация объектов. Генетический подход основан на идее, что некий алгоритм может стать более эффективным, если позаимствует лучшие характеристики у других алгоритмов («родителей»). Относительно новый подход, где ставится задача создания автономной программы — агента, взаимодействующего с внешней средой, называется агентным подходом.

[править]Робототехника

Основная статья: Интеллектуальная робототехника

См. также: Робототехника

Области робототехники[19] и искусственного интеллекта тесно связаны друг с другом. Интегрирование этих двух наук, создание интеллектуальных роботов составляют ещё одно направление ИИ. Интеллектуальность требуется роботам, чтобы манипулировать объектами[20], выполнять навигацию с проблемами локализации (определять местонахождение, изучать ближайшие области) и планировать движение (как добраться до цели)[21]. Примером интеллектуальной робототехники могут служить игрушки-роботы PleoAIBOQRIO.

[править]Машинное творчество

Основная статья: Машинное творчество

Природа человеческого творчества ещё менее изучена, чем природа интеллекта. Тем не менее, эта область существует, и здесь поставлены проблемы написания компьютером музыкилитературных произведений (часто — стихов или сказок), художественное творчество. Создание реалистичных образов широко используется в кино и индустрии игр.

Отдельно выделяется изучение проблем технического творчества систем искусственного интеллекта. Теория решения изобретательских задач, предложенная в 1946 году Г. С. Альтшуллером, положила начало таким исследованиям.

Добавление данной возможности к любой интеллектуальной системе позволяет весьма наглядно продемонстрировать, что именно система воспринимает и как это понимает. Добавлением шума вместо недостающей информации или фильтрация шума имеющимися в системе знаниями производит из абстрактных знаний конкретные образы, легко воспринимаемые человеком, особенно это полезно для интуитивных и малоценных знаний, проверка которых в формальном виде требует значительных умственных усилий.

[править]Другие области исследований

Наконец, существует масса приложений искусственного интеллекта, каждое из которых образует почти самостоятельное направление. В качестве примеров можно привести программированиеинтеллекта в компьютерных играхнелинейное управление, интеллектуальные системы информационной безопасности.

Можно заметить, что многие области исследований пересекаются. Это свойственно для любой науки. Но в искусственном интеллекте взаимосвязь между, казалось бы, различными направлениями выражена особенно сильно, и это связано с философским спором о сильном и слабом ИИ.

Можно выделить два направления развития ИИ:

  • решение проблем, связанных с приближением специализированных систем ИИ к возможностям человека, и их интеграции, которая реализована природой человека (см. Усиление интеллекта);

  • создание искусственного разума, представляющего интеграцию уже созданных систем ИИ в единую систему, способную решать проблемы человечества (см. Сильный и слабый искусственный интеллект).

Но в настоящий момент в области искусственного интеллекта наблюдается вовлечение многих предметных областей, имеющих скорее практическое отношение к ИИ, а не фундаментальное. Многие подходы были опробованы, но к возникновению искусственного разума ни одна исследовательская группа пока так и не подошла. Ниже представлены лишь некоторые наиболее известные разработки в области ИИ.

[править]Применение

Некоторые из самых известных ИИ-систем:

  • Deep Blue — победил чемпиона мира по шахматам. Матч Каспаров против суперЭВМ не принёс удовлетворения ни компьютерщикам, ни шахматистам, и система не была признана Каспаровым (подробнее см. Человек против компьютера). Затем линия суперкомпьютеров IBM проявилась в проектах brute force BluGene (молекулярное моделирование) и моделирование системы пирамидальных клеток в швейцарском центре Blue Brain[22].

  • Watson — перспективная разработка IBM, способная воспринимать человеческую речь и производить вероятностный поиск, с применением большого количества алгоритмов. Для демонстрации работы Watson принял участие в американской игре «Jeopardy!», аналога «Своей игры» в России, где системе удалось выиграть в обеих играх[23].

  • MYCIN — одна из ранних экспертных систем, которая могла диагностировать небольшой набор заболеваний, причем часто так же точно, как и доктора.

  • 20Q — проект, основанный на идеях ИИ, по мотивам классической игры «20 вопросов». Стал очень популярен после появления в Интернете на сайте 20q.net[24].

  • Распознавание речи. Системы такие как ViaVoice способны обслуживать потребителей.

  • Роботы в ежегодном турнире RoboCup соревнуются в упрощённой форме футбола.

Банки применяют системы искусственного интеллекта (СИИ) в страховой деятельности (актуарная математика), при игре на бирже и управлении собственностью. Методы распознавания образов (включая, как более сложные и специализированные, так и нейронные сети) широко используют при оптическом и акустическом распознавании (в том числе текста и речи), медицинской диагностике, спам-фильтрах, в системах ПВО (определение целей), а также для обеспечения ряда других задач национальной безопасности.

Разработчики компьютерных игр применяют ИИ в той или иной степени проработанности. Это образует понятие «Игровой искусственный интеллект». Стандартными задачами ИИ в играх являются нахождение пути в двумерном или трёхмерном пространстве, имитация поведения боевой единицы, расчёт верной экономической стратегии и так далее.

35. Понятие экспертной системы. Назначение экспертных систем. Формальные основы построения и архитектура экспертных систем.