
- •АМИНОКИСЛОТЫ
- •АМИНОКИСЛОТЫ
- •КЛАССИФИКАЦИЯ
- •В зависимости от количества функциональных гр. различают:
- •Общая формула алифатических насыщенных моноаминокислот:
- •Алифатические АК в зависимости от взаимного расположения –СООН и –NH2 – групп делятся
- •Природные -АК делятся на
- •В зависимости от строения углеводородного R -АК делятся на алифатические,
- •Номенклатура
- •CH3 CH CH COOH
- •Для АК характерна структурная изомерия, обусловленная как строением С-скелета, так и расположением функциональных
- •АК, подобно МС, относят к D- и L-
- ••Большинство природных АК, участвующих в биохимических процессах содержат первичную аминогруппу, находящуюся в
- •Важнейшие -АК
- •(CH3)2CH CH COOH Валин*
- •HOOC
- •СПОСОБЫ ПОЛУЧЕНИЯ АК
- •Способы получения:-АК
- •• 2). Аминирование эфиров-галогензамещенных к-т (синтез Габриэля)
- •3). Циангидринный синтез (синтез Шреккера- Зелинского)
- •• 1)-2) способы синтеза с
- •Разделение рацемической смеси
- •Получение -АК
- ••2) Синтез Родионова с малоновым эфиром
- ••Для синтеза , - и т. д. АК могут быть
- ••Ароматические АК получают восстановлением соответствующих нитросоединений.
- •ФИЗИЧЕСКИЕ СВОЙСТВА
- ••В состав молекулы АК входит аминогруппа, обладающая основными свойствами и карбоксильная группа, обладающая
- •акцептор
- •-АК в твердом виде находятся в
- •• Значение рН, при котором
- •В случае моноаминокарбоновых кислот водные р-ры в большинстве случаев имеют слабокислую реакцию (pH
- •ХИМИЧЕСКИЕ СВОЙСТВА
- ••2) Образование сложных эфиров реакцией этерификации
- •3) Получение ангидридов АК. Получение ангидридов АК сопряжено с трудностями, т. к. требуют
- •• 4) Декарбоксилирование
- ••Реакции по NH2-группе
- •2)Образование алкилпроизводных
- ••Моноалкилирование хорошо протекает при бензилировании:
- ••3) Арилирование
- ••4) Образование ацилпроизводных.
- ••Реакция ацилирования имеет большое значение при синтезе пептидов для защиты аминогруппы.
- •• А) Карбобензоксизащита
- ••Б) БОК-защита – в качестве защиты используется трет- бутоксикарбонильная гр.
- •CF3COOH снятие защиты
- •5) Реакция с азотистой кислотой (дезаминирование)
- •Реакции с участием NH2- и
- •2) Окислительное дезаминирование
- •3) Отношение к нагреванию
- •Качественные реакции на АК
- ••2) Ксантопротеиновая р-ция
- •Нитросоединения тирозина и триптофана в отличие от нитропроизводного фенилаланина в щелочной среде образуют
- ••3) Реакция Фоля
- •HS H2C CH COO_ 2NaOH
- •Пептидный синтез
- •Пептидный синтез представляет весьма сложную, тонкую экспериментальную задачу. Прямой конденсацией -АК пептиды
- •Для синтеза пептидов заданнного
- •3)Проводят конденсацию полученных производных
- •Синтез дипептида Gly-Ala:
- •Защита СООН-гр. С-концевой АК
- •Образование пептидной связи
- •ПЕПТИДЫ, БЕЛКИ
- •• Провести четкую грань между
- •Классификация
- •5)токсические белки;
- ••По хим. строению и степени сложности белки подразделяют на группы:
- ••Простые белки в свою очередь делятся на основании некоторых условно выбранных критериев на
- •Классификация сложных белков основана на хим. природе входящей в их состав простетической группы.
- ••Многие белки имеют тривиальные названия, присвоенные чаще всего в зависимости либо от источника
- •В соответствии с номенклатурой IUPAC в наименовании пептидов используются тривиальные названия всех аминокислот,
- •СТРОЕНИЕ
- •Полиамиды длиной от 2 до нескольких десятков АК остатков часто называют пептидами, при
- ••Несмотря на разнообразие, элементный состав белков колеблется незначительно.
- ••ММ белков колеблется в широких пределах от нескольких тысяч до миллионов. Так. миоглобин
- ••При образовании белка в результате
- ••Полипептидная цепь пептидов и белков имеет неразветвленное строение и состоит из чередующихся амидных
- •амидные группы
- ••Названия пептидов строят путем последовательного перечисления АК-ых остатков, начиная с N-конца. Т.к. эти
- ••Высокомолекулярные полипептиды и белки обладают весьма сложным строением и характеризуются четырьмя уровнями структуры
- •Состав белковой молекулы, представленный в виде чередующихся остатков аминокислот, называют
- •Для определения аминокислотного состава пептид подвергают ферментативному или кислотному гидролизу. Полученный гидролизат анализируют
- •Выяснение порядка расположения АК в полипептидной цепочке осуществляют с помощью метода секвенирования .
- ••Определение АК-ой последовательности
- •Метод Эдмана
- •• Метод Сэнгера
- •• Дансильный метод
- ••Дансильный метод наиболее предпочтительный, т.к.
- •В настоящее время созданы специальные автоматизированные установки для проведения всех перечисленных операций -
- ••Методы определения последовательности АК-ого состава на С-конце менее совершенны. Для последовательного отщепления
- •Кроме последовательности АК полипептида (первичной структуры), крайне важна трехмерная структура белка, которая формируется
- •Атомы С, O, N в пептидной гр.
- ••Вследствие М-эффекта на О-атоме возникает --заряд (он становится более ЭД), а на N-атоме
- •-С-атомы АК остатков в полипептидной
- ••Вторичная структура описывает пространственное строение одной полипептидной цепи. Наиболее распространённые типы вторичной структуры
- ••Основное значение в закреплении этой пространственной структуры имеют Н-связи, которые направлены практически параллельно
- ••β-листы (складчатые слои) –
- •к С-концу
- ••Многие белки одновременно содержат структуры-спирали и складчатого листа с преобладающим
- •• Третичная структура –
- ••– ковалентные связи (между двумя остатками цистеина –
- ••– ионные связи между противоположно заряженными боковыми группами АК остатков
- •– Н-связи между функц. гр. боковых радикалов, а также между ними и пептидынми
- ••– гидрофильно-гидрофобные взаимодействия. При взаимодействии с окружающими молекулами воды белковая молекула «стремится» свернуться
- ••По типу упаковки различают
- ••Четвертичная структура –
- •Напр. у гемоглобина полипептидная цепь (перв. структура) закручена в
- •Пространственная структура белков способна нарушаться под влиянием разл. физ.и хим. факторов: т-ры, облучения,
- •Свойства
- •Химические свойства
- •2). Нингидриновая реакция – появление синей окраски при взаимодействии с нингидрином (0,5% р-р).
- •3). Ксантопротеиновая р-ция – появление желтой окраски в результате действия на белки конц.
- •Гидролиз
- •Схема гидролиза
•Реакция ацилирования имеет большое значение при синтезе пептидов для защиты аминогруппы.
•Защитные группы должны
легко вводиться, быть устойчивыми в условиях синтеза
и легко удаляться.
•Таким требованиям удовлетворяют следующие защиты:

• А) Карбобензоксизащита |
|||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
O |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
O |
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
C H |
CH OH |
Cl C Cl C H CH |
|
|
|
O |
|||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||
2 |
|
C |
|
Cl |
|||||||||||||||||||||||||||||||||||
|
|
||||||||||||||||||||||||||||||||||||||
6 |
5 |
2 |
|
|
|
|
|
|
|
|
|
|
|
6 |
5 |
|
|
|
|
|
|
|
|
|
|
||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
карбобензоксихлорид |
|||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+ |
|
|
|
|
COOH |
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
H2N |
|
|
|
CH |
|
|
|
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||
|
|
|
|
O |
|
|
|
|
|
|
|
|
|
|
|
|
|
R |
|
|
|
|
|
|
|
|
|
|
|
||||||||||
C6H5CH2O |
|
|
|
|
|
|
|
|
|
|
|
COOH |
|||||||||||||||||||||||||||
|
|
|
|
HN |
|
|
CH |
|
|
||||||||||||||||||||||||||||||
|
C |
|
|
|
|
||||||||||||||||||||||||||||||||||
|
|
|
|
|
|||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||
|
N-карбобензоксиАК |
|
|
|
R |
H /Pd |
|
|
|
снятие защиты |
|||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
H2N |
|
|
CH |
|
COOH + C6H5CH3 + CO2 |
||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
R |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

•Б) БОК-защита – в качестве защиты используется трет- бутоксикарбонильная гр.
(CH3)3C |
|
O |
|
O |
|
|
|
|
|
|
|
|
|
|
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
C |
|
|
N3 + H N |
|
|
|
|
CH |
|
|
COOH |
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||
трет-бутоксикарбоксазид |
2 |
|
|
|
|
|
|
|
|
|||||||||||||||||
|
|
R |
|
|
||||||||||||||||||||||
_ |
(CH3)3C |
|
|
O |
|
O |
HN |
|
|
CH |
|
|
COOH |
|||||||||||||
|
|
|
|
|
|
|
|
|
||||||||||||||||||
|
|
C |
|
|
|
|
||||||||||||||||||||
|
|
|
||||||||||||||||||||||||
|
|
|
|
|
|
|
||||||||||||||||||||
|
HN3 |
|
|
|
|
|
|
|||||||||||||||||||
|
|
|
|
|
|
|
|
|||||||||||||||||||
|
|
|
|
R |
|
|
||||||||||||||||||||
|
|
|
N-трет-бутоксикарбонилАК |

CF3COOH
снятие защиты
H2N CH COOH+ (CH3)2C CH2 + CO2
R

5) Реакция с азотистой кислотой (дезаминирование)
H2N |
|
CH |
|
COOH + |
HNO2 |
|
|
|
|||||
|
|
(NaNO2/HCl) |
||||
|
|
|
||||
|
R |
HO CH COOH +N2 + H2O
R

Реакции с участием NH2- и
COOH-групп
•1) Образование комплексов с металлами
2 H2N CH COOH +
R
O
C O
R HC
N
H2
Cu(OH)2 _ H2O
HN2 HC R
Cu
OCO

2) Окислительное дезаминирование
-АК проводят под действием ди- и
трикетонов, оксида серебра и некоторых др. оксидов. При этом происходит и декарбоксилирование.
H2N |
|
CH |
|
|
COOH |
[O] |
|
[RCH |
|
NH] |
||||
|
|
|
_2H, _CO2 |
|
||||||||||
|
|
|
|
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
||
H2O |
|
R |
O |
|
|
|
|
|||||||
|
+ NH3 |
|
|
|
||||||||||
|
|
|
R |
|
C |
H |
|
|
|
|||||
|
|
|
|
|
|
|
||||||||
|
|
|
|
|

3) Отношение к нагреванию
А) -АК:
RCH NH
H
ROC
O
O |
|
|
|
|
C |
|
|
R |
O |
OR |
|
|
||
|
t |
CH |
C |
|
|
|
|||
H |
_ |
HN |
NH |
|
|
|
|
||
NH |
2ROH |
C |
CH |
|
|
|
|
||
HC |
R |
|
O |
R |
|
|
|
|
|
|
|
|
дикетопиперазин |

• Б) -АК:
R |
|
CH |
|
CH |
|
COOH |
_t |
|
R |
|
C |
|
CH |
|
COOH |
|
|
|
|
|
|
|
|||||||||||
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
|
||||||||||
|
|
2 |
|
|
|
|||||||||||
|
|
|
|
|
|
|
NH3 |
|
|
H |
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
NH2 |
|
|
|
|
В) - и -АК:
|
|
|
|
|
|
|
|
|
|
|
|
R |
|
|
H |
|
|
|
|
|
|
|
|
|
C O |
_t |
|
CH |
C2 |
||
R |
|
|
CH |
|
CH |
|
CH2 |
|
|
|
CH2 |
||||
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
2 |
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
OH |
H2O |
HN |
|
|||
|
|
NH2 |
C |
||||||||||||
|
|
|
|
|
|
O

Качественные реакции на АК
•1) Нингидриновая р-ция
•При окислительном дезами- нировании -АК под действием
нингидрина (трикетона) проис- ходит окрашивание р-ра АК в характерную синюю окраску. Ее дает продукт конденсации нингидрина с аммиаком.

O |
|
|
|
C |
C OH |
+ H2N CH COOH |
100oC |
|
|||
|
_ RCHO |
||
C |
OH |
R |
_CO2 |
|
|
|
|
O |
O |
O |
|
|
C |
C |
|
|
|
C N C |
|
|
C |
C |
|
|
O |
OH |
|