Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
самоподготовка 6-12.docx
Скачиваний:
173
Добавлен:
28.11.2022
Размер:
728.86 Кб
Скачать

4. Наследственная изменчивость. Генотипическая изменчивость. Комбинативная изменчивость. Их виды, механизмы и биологическое значение. Рекон.

Генотипическая, или наследственная изменчивость, представляет собой изменения фенотипа, обусловленные изменениями генотипа. Она вызывается мутациями и их комбинациями при половом размножении (например, наследуемая комолость у крупного рогатого скота).

В зависимости от характера варьирования генетического материала различают комбинативную и мутационную наследственную изменчивость. Комбинативная изменчивость обусловлена образованием у потомков новых сочетаний генов в генотипах, формирующихся в результате перекомбинирования генов и хромосом в процессе полового размножения. Бесконечное разнообразие генотипов живых организмов, уникальность каждого генотипа обусловлены комбинативной изменчивостью. При этом типе изменчивости изменяются сочетания генов и характер их взаимодействия в генотипе, а сами гены остаются неизмененными.

Комбинативная изменчивость, являясь результатом перекомбинирования генов родительских особей в генотипах потомков, основывается на трёх основных механизмах.

1. Независимое расхождение в дочерние клетки (сперматоциты II, ооцит II и первое редукционное тельце) гомологичных хромосом из каждой пары (имеет место при I делении мейоза в ходе гаметогенеза). Например, даже для 2-х пар хромосом возможны 2 варианта расхождения хромосом в дочерние клетки и 4 типа сперматозоидов (рис. 76).

Р ис. 76 (слева). Произвольное расхождение гомологичных (отцовской и материнской) хромосом из каждой пары при первом делении мейоза как механизм комбинативной изменчивости

Рис. 77 (справа). Кроссинговер как один из механизмов комбинативной изменчивости

Кроссинговер происходит в начале мейоза, когда гомологичные хромосомы выстраиваются друг против друга. При этом участки гомологичных хромосом перекрещиваются, отрываются, а затем вновь присоединяются, но уже к другой хромосоме. В конечном итоге образуются четыре хромосомы с разными комбинациями генов. Хромосомы, называемые «рекомбинантными», несут новые комбинации генов (Ab и аВ), отсутствовавшие в исходных хромосомах (АВ и ab)

2. Случайное сочетание гамет, а, следовательно, гомологичных (отцовской и материнской) хромосом при оплодотворении. Для отмеченных выше 4 типов спермиев сугубо случайным будет участие одного из них в оплодотворении яйцеклетки, и различными будут результаты конкретного сочетания одного из вариантов мужских хромосом с одним (также из 4-х возможных, т.к. три варианта унесены редукционными тельцами и прекратили существование) из вариантов гомологичных им женских хромосом.

3. Обмен отдельными аллелями между гомологичными хромосомами в процессе кроссинговера мейоза. После него комбинации аллелей в хромосомах спермиев характеризуются новыми вариантами, отличающимися от таковых соматических клеток организма. Комбинативная изменчивость объясняет, почему у детей обнаруживаются новые сочетания признаков родственников по материнской и отцовской линиям, причём в таких конкретных вариантах, которые не были свойственны ни отцу, ни матери, ни дедушке, ни бабушке и т.д.

Благодаря комбинативной изменчивости создаётся разнообразие генотипов в потомстве, что имеет большое значение для эволюционного процесса в связи с тем, что: 

1) увеличивается разнообразие материала для эволюционного процесса без снижения жизнеспособности особей; 2) расширяются возможности приспособления организмов к изменяющимся условиям среды и тем самым обеспечивается выживание группы организмов (популяции, вида) в целом.

Комбинативная изменчивость используется в селекции с целью получения более ценного в хозяйственном отношении сочетания наследственных признаков. В частности применяется явление гетерозиса, повышения жизнеспособности, интенсивности роста и других показателей при гибридизации между представителями различных подвидов или сортов. Ярко выражено оно, например, у кукурузы (рис. 78), обусловливая значительный экономический эффект. 

Противоположный эффект даёт явление инбридинга или близкородственного скрещивания - скрещивания организмов, имеющих общих предков. Общность происхождения скрещиваемых организмов увеличивает у них вероятность наличия одних и тех же аллелей любых генов, а следовательно - вероятность появления гомозиготных организмов. Наибольшая степень инбридинга достигается при самоопылении у растений и самооплодотворении у животных. Гомозиготность увеличивает возможность проявления рецессивных аллельных генов, мутагенные изменения которых приводят к появлению организмов с наследственными аномалиями.

Неблагоприятные последствия инбридинга высокой степени (с большим значением коэффициента инбридинга) служат генетическим обоснованием нежелательности близкородственных браков у человека. Различают следующие системы браков: 1) случайный подбор брачной пары в определённой группе людей (панмиксия); 2) более частое, чем при панмиксии, вступление в брак индивидуумов, состоящих в родстве (инбридинг); 3) более редкое, чем при панмиксии, вступление в брак индивидуумов, состоящих в родстве (аутбридинг).

Наряду с системами браков выделяют два типа образования брачных пар:

1) положительное ассортативное (избирательное) образование брачных пар, или более частое вступление в брак индивидуумов, сходных по определённым фенотипическими признаками (браки между глухонемыми, или сходными по росту, по умственному развитию и т.п.);

2) отрицательное ассортативное образование брачных пар, или более редкое вступление в брак индивидуумов со сходными определёнными признаками (например, рыжеволосые особи избегают вступать в брак друг с другом).

Как инбридинг, так и положительное ассортативное образование брачных пар повышают (последнее, правда, в меньшей степени) уровень гомозиготности потомков, в том числе и по локусам вредных рецессивных аллелей. Аутбридинг, наоборот, повышает степень гетерозиготности и во многих случаях повышает уровень жизнеспособности. Возможные последствия инбридинга и положительного ассортативного образования брачных пар используются в медико-генетическом консультировании потенциальных брачных партнёров.

С учётом этого во многих странах существуют запретные (инцестные) браки между ближайшими родственниками, например, братом и сестрой, а в более чем в 1/3 штатов США запрещены браки между двоюродными сибсами. Хотя история свидетельствует о допущении в отдельных случаях таких браков (в племени эрнодан, живущем на полуострове Индостан, старшая дочь обычно становится второй женой отца). Более высокая степень близкородственных браков наблюдается в малых по размерам группах людей, изолированных географически, или из-за религиозных и других убеждений.

Рекон-  наименьший неделимый элемент в нитевидной структуре ДНК, который может быть подвержен спонтанной или индуцированной мутации, элементарная единица рекомбинации, на молекулярном уровне соответствует одной паре нуклеотидов.

5. Эволюционное и медицинское значение рекомбинации наследственного материала. Мейоз и оплодотворение обеспечивают получение организмами нового поколения эволюционно сложившегося, сбалансированного по дозам генов наследственного материала, на основе которого осуществляется развитие организма и отдельных его клеток. Благодаря этим двум механизмам в ряду поколений особей данного вида формируются определенные видовые характеристики и вид как реальная единица живой природы существует продолжительное время.

Однако у разных представителей вида в силу постоянно идущего мутационного процесса один и тот же набор генов генома представлен разными их аллелями. Так как при половом размножении у многих видов в воспроизведении потомства принимают участие две особи, то совершенно очевидно, что в результате оплодотворения разные зиготы получают неодинаковый набор аллелей в их генотипах. Увеличению генотипического разнообразия представителей вида способствуют также механизмы, приводящие к перекомбинации родительских аллелей особи в ее гаметах.

Рекомбинация наследственного материала в генотипе. 

Кроссинговер имеет большое значение для эволюции, так как непомерно увеличивает возможности комбинативной изменчивости. Вследствие перекреста отбор в процессе эволюции идет не по целым группам сцепления, а по группам генов и даже отдельным генам. Ведь в одной группе сцепления могут находиться гены, кодирующие наряду с адаптивными (приспособительными) и неадаптивные состояния признаков. В результате перекреста полезные для организма признаки могут быть отделены от вредных и, следовательно, возникнут более выгодные комбинации - адаптивные.

Расхождение бивалентов в анафазе I мейоза. В метафазе I мейоза в экваториальной плоскости ахромативнового веретена выстраиваются биваленты, состоящие из одной отцовской и одной материнской хромосомы. Расхождение гомологов, которые несут разный набор аллелей генов в анафазе I мейоза, приводит к образованию гамет, отличающихся по аллельному составу отдельных групп сцепления.

Оплодотворение. Случайная встреча разных гамет при оплодотворении приводит к тому, что среди особей вида практически невозможно появление двух генотипически одинаковых организмов. Достигаемое с помощью описанных процессов генотипическое разнообразие особей предполагает наследственные различия между ними на базе общего видового генома.

6. Мутационная изменчивость и ее биологическое значение. Характеристика мутаций (внезапность, стойкость, индивидуальный характер, неадаптивность, неадекватность, отсутствие вариабельности). Причины и механизмы возникновения. Мутон. Мутационная изменчивость - это такой тип изменчивости, при которой происходит скачкообразное, прерывистое изменение наследственного признака. Мутации - это внезапно возникающие стойкие изменения генетического аппарата, включающие как переход генов из одного аллельного состояния в другое, так и различные изменения структуры генов, числа и структуры хромосом, плазмогенов цитоплазмы.

Термин мутация впервые был предложен де Фризом в его труде «Мутационная теория» (1901-1903). Основные положения этой теории:

1. Мутации возникают внезапно, новые формы вполне устойчивы.

2. Мутации являются качественными изменениями.

3. Мутации могут быть полезными и вредными.

4. Одни и те же мутации могут возникать повторно.

Свойства мутаций: 1. Возникают внезапно, скачкообразно. 2. Наследственны, т. е. стойко передаются из поколения в поколение. 3. Случайны и ненаправленны — мутировать может любой ген, вызывая изменения как незначительных, так и жизненно важных признаков. 4. Одни и те же мутации могут возникать повторно. 5. По своему проявлению могут быть полезными и вредными, доминантными и рецессивными.

Причины возникновения мутаций

По причинам возникновения различают спонтанные и индуцированные мутации.

Спонтанные (самопроизвольные) мутации возникают без видимых причин. Эти мутации иногда рассматривают как ошибки трех Р: процессов репликации, репарации и рекомбинации ДНК. Это означает, что процесс возникновения новых мутаций находится под генетическим контролем организма. Например, известны мутации, которые повышают или понижают частоту других мутаций; следовательно, существуют гены-мутаторы и гены-антимутаторы.

В то же время, частота спонтанных мутаций зависит и от состояния клетки (организма). Например, в условиях стресса частота мутаций может повышаться.

Индуцированные мутации возникают под действием мутагенов.

Мутагены это разнообразные факторы, которые повышают частоту мутаций.

Впервые индуцированные мутации были получены отечественными генетиками Г.А. Надсоном и Г.С. Филипповым в 1925 г. при облучении дрожжей излучением радия.

Различают несколько классов мутагенов:

–  Физические мутагены: ионизирующие излучения, тепловое излучение, ультрафиолетовое излучение.

–  Химические мутагены: аналоги азотистых оснований (например, 5-бромурацил), альдегиды, нитриты, метилирующие агенты, гидроксиламин, ионы тяжелых металлов, некоторые лекарственные препараты и средства защиты растений.

–  Биологические мутагены: чистая ДНК, вирусы, антивирусные вакцины.

–  Аутомутагены – промежуточные продукты обмена веществ (интермедиаты). Например, этиловый спирт сам по себе мутагеном не является. Однако в организме человека он окисляется до ацетальдегида, а это вещество уже является мутагеном.

Последствия. Большинство изменений фенотипически неблагоприятно – вредные генные мутации. Среди них выделяют летальные (несовместимы с жизнью) и полулетальные мутации (стерильные особи или не доживают до половой зрелости). Редко случаются изменения генов с благоприятными последствиями – полезные генные мутации. Известны нейтральные генные мутации, не сказывающиеся на жизнеспособности и репродуктивном потенциале. (гемофилия, Альбинизм)

Минимальное количество наследственного материала, способное, изменяясь, приводить к появлению вариантов признака, соответствует элементарной единице мутационного процесса и называется мутоном. Мутон соответствует одной паре комплементарных нуклеотидов.