
- •1. Хромосомная теория наследственности т.Моргана, ее основные положения.
- •2. Сцепление генов. Группа сцепления. Неполное и полное сцепление генов. Количество групп сцепления у организмов разных видов.
- •3. Механизм кроссинговера. Объясните результаты опытов, полученные при независимом и сцепленном наследовании признаков.
- •4. Понятие о цис- и транс- сцеплении генов.
- •6. Определение пола. Типы определения пола (прогамный, эпигамный, сингамный).
- •7. Хромосомный механизм наследования пола.
- •8. Роль условий среды и наследственности в определении пола.
- •9. Сцепленное с полом наследование признаков.
- •4. Наследственная изменчивость. Генотипическая изменчивость. Комбинативная изменчивость. Их виды, механизмы и биологическое значение. Рекон.
- •7. Классификация мутаций: генные; хромосомные; геномные; мутации в половых и соматических клетках (соматические и генеративные мутации).
- •Механизмы возникновения хромосомных мутаций. Примеры.
- •Механизмы возникновения генных мутаций. Примеры.
- •10. Мутагенные факторы. Мутагенез и канцерогенез. Спонтанный и индуцированный мутагенез. Антимутагены.
- •1.Суть и задачи генеалогического метода. Генеалогический метод
- •2.Символы, используемые для составления родословной. Основные правила и принципы составления родословной.
- •3.Особенности родословных с аутосомно-доминатным и аутосомно-рецессивным типами наследования.
- •4.Характеристика родословных X-сцепленного доминантного и Xсцепленного рецессивного типов наследования.
- •7.Суть и задачи близнецового метода.
- •Практическая 10 «Цитогенетический метод исследования генетики человека»
- •1.) Хромосомы нормального кариотипа человека (размеры, типы хромосом, центромерный индекс)
- •3.) Характеристика а, в, с, d, е, f, g групп хромосом.
- •4.) Основные символы и сокращения для обозначения хромосомных аномалий: обозначения – плеч хромосом, аберраций хромосом, анеуплоидий.
- •Подбор клеточного материала. Культивирование
- •Окрашивание.
- •Способы дифференциального окрашивания: q, g, r, c, t - окрашивание.
- •7.) Особенности fish метода.
- •8.) Мутации, выявляемые цитогенетическим методом (геномные и хромосомные), причины и механизмы возникновения.
- •9.) Хромосомные карты. Цитогенетическая карта Физическая карта Рестрикционная карта
- •Мозаичные формы
- •13.) Метод генетики соматических клеток и его возможности в медицине.
- •14.) Метод биологического и математического моделирования.
- •Современные методы генетики и работа с базами данных генов. Пцр. Таргетная терапия.
- •4. Полимеразная цепная реакция (пцр).
- •5. Понятие таргетной терапии, как одного из видов молекулярной медицины.
- •6. Биоинформационные подходы в геномике. Геномные базы данных человека.
- •Анализ генетических последовательностей
- •Аннотация геномов
- •Вычислительная эволюционная биология
- •Оценка биологического разнообразия
- •Основные биоинформатические программы
Практическая 6
1. Хромосомная теория наследственности т.Моргана, ее основные положения.
Гены располагаются в хромосомах; различные хромосомы содержат неодинаковое число генов; набор генов каждой из негомологичных хромосом уникален;
Каждый ген имеет определенное место (локус) в хромосоме; в идентичных локусах гомологичных хромосом находятся аллельные гены;
Гены расположены в хромосомах в определенной линейной последовательности;
Гены, локализованные в одной хромосоме, наследуются совместно, образуя группу сцепления; число групп сцепления равно гаплоидному набору хромосом и постоянно для каждого вида организмов;
Сцепление генов может нарушаться в процессе кроссинговера, что приводит к образованию рекомбинантных хромосом; частота кроссинговера зависит от расстояния между генами: чем больше расстояние, тем больше величина кроссинговера;
На основании частот рекомбинации определяют расстояние между генами. Что позволяет строить генетические карты хромосом.
2. Сцепление генов. Группа сцепления. Неполное и полное сцепление генов. Количество групп сцепления у организмов разных видов.
Установлено, что гены размещаются в хромосомах, располагаясь в них в линейном порядке. Гены каждой хромосомы образуют группу сцепления, число которых определяется количеством хромосом в половых клетках. Гены одной группы сцепления наследуются, как правило, совместно. Количество групп сцепления соответствует гаплоидному набору хромосом. Однако в ряде случаев происходит их перекомбинация в связи с кроссинговером, частота которого зависит от расстояния между генами. Поэтому Морган предположил, что гены локализованы на хромосомах.
Таким образом, в хромосомной теории нашел отражение один из важнейших принципов генетики — единство дискретности и непрерывности наследственного материала.
Сцепленное наследование— наследование признаков, гены которых локализованы в одной хромосоме. Сила сцепления между генами зависит от расстояния между ними: чем дальше гены располагаются друг от друга, тем выше частота кроссинговера и наоборот. Полное сцепление— разновидность сцепленного наследования, при которой гены анализируемых признаков располагаются так близко друг к другу, что кроссинговер между ними становится невозможным. Неполное сцепление— разновидность сцепленного наследования, при которой гены анализируемых признаков располагаются на некотором расстоянии друг от друга, что делает возможным кроссинговер между ними.
Независимое наследование— наследование признаков, гены которых локализованы в разных парах гомологичных хромосом.
Некроссоверные гаметы— гаметы, в процессе образования которых кроссинговер не произошел.
3. Механизм кроссинговера. Объясните результаты опытов, полученные при независимом и сцепленном наследовании признаков.
Процессы, протекающие в редукционном делении, обеспечивают также не менее важное следствие — генетическое разнообразие гамет, образуемых организмом. К таким процессам относят кроссинговер, расхождение гомологичных хромосом в разные гаметы и независимое поведение бивалентов в первом мейотическом делении.
Кроссинговер обеспечивает перекомбинацию отцовских и материнских аллелей в группах сцепления (см. рис. 3.72). Ввиду того что перекрест хромосом может происходить в разных участках, кроссинговер в каждом отдельном случае приводит к обмену разным по количеству генетическим материалом. Необходимо отметить также возможность возникновения нескольких перекрестов между двумя хроматидами (рис. 5.9) и участия в обмене более чем двух хроматид бивалента. Отмеченные особенности кроссинговера делают этот процесс эффективным механизмом перекомбинации аллелей.
Рис. 5.9. многократный кроссинговер между гомологичными хромосомами:
А—Е, а—е — локусы хромосом.