
- •Реферат
- •Глава 1. Системы автоматического управления и их особенности 9
- •Глава 2. Моделирование работы суэп 23
- •Глава 3. Математическое описание и моделирование работы нелинейного устройства управления с перекрестной связью 62
- •Глава 4. Экспериментальные результаты 88
- •Введение
- •Глава 1. Системы автоматического управления и их особенности
- •1.1. Обзор и анализ структур и элементов линейных приводов подачи с швп станков с чпу
- •1.2. Анализ структур суэп
- •1.3. Обзор и анализ управляющих элементов в суэп
- •1.3.2. Стандартный уэ прямой связи
- •1.3.3. Управляющий элемент перекрестной связи
- •1.4. Выводы по главе
- •Глава 2. Моделирование работы суэп
- •2.1. Описание экспериментального оборудования
- •2.2. Реализация обратной связи по положению
- •2.3. Реализация обратной связи по току
- •2.4. Структурная схема и математическое описание электромеханической части привода подачи
- •2.5. Чувствительность параметров модели
- •2.6. Настройка пид-регулятора
- •2.6.1. Настройка пид-регулятора по оси х
- •2.6.2. Настройка пид-регулятора по оси у
- •2.6.3. Балансировка параметров между осями х и у
- •2.7. Моделирование управляющего элемента прямой связи
- •2.7.1. Настройка параметров уэ по оси х
- •2.7.2. Настройка параметров уэ по оси y
- •2.7.3. Балансировка параметров уэ прямой связи для осей х и у
- •2.8. Моделирование работы уэ с перекрестной связью (кпс)
- •2.8.1. Переменные коэффициенты усиления кпс при линейной обработке
- •2.8.2. Переменные коэффициенты усиления кпс при круговой обработке
- •2.8.3. Реализация кпс
- •Глава 3. Математическое описание и моделирование работы нелинейного устройства управления с перекрестной связью
- •3.1. Генерация траектории перемещения
- •3.1.1. Линейная интерполяция
- •3.1.2. Круговая интерполяция
- •3.1.3. Кусочно-линейная интерполяция
- •3.2. Генерация кинематических профилей
- •3.2.1. Определение и квантование длин перемещения
- •3.2.2. Корректировка значений ускорения и рывка
- •3.3. Математическое описание динамики фрезерного станка
- •3.3.1. Система ошибок замкнутого контура
- •3.3.2. Анализ стабильности
- •3.3.3. Формулировка управления
- •Глава 4. Экспериментальные результаты
- •4.1. Обработка квадрата (сторона 100 мм)
- •4.2. Обработка контура типа ромб
- •4.3. Обработка окружности (радиус 100мм)
- •Заключение
- •Список использованных источников
2.5. Чувствительность параметров модели
Чтобы оценить чувствительность параметров модели, имитируемый отклик системы с разомкнутым контуром сравнивается с фактическим откликом системы с разомкнутым контуром при изменении параметров модели в процессе моделирования.
Поскольку параметры модели могут быть более четко отражены в системе с разомкнутым контуром, чем в системе с замкнутым контуром, выбирается реакция системы с разомкнутым контуром.
Команда постоянного тока подается на вход системы с разомкнутым контуром, а на выходе двигателя контролируются положение и скорость. Эти фактические профили положения и скорости сравниваются с результатами моделирования с использованием модели привода подачи в MATLAB Simulink.
Чувствительность коэффициента вязкого трения по оси x показана на рис. 26, где сплошная линия обозначает результат эксперимента, а пунктирные линии - результаты моделирования. Исходное значение (0,01725 Нм/рад/сек) для коэффициента вязкого трения изменяется с − 40% до 40% (т.е. 0,0104, 0,0138, 0,0207 и 0,0242 Нм/рад/сек) посредством моделирования. Аналогично, на рис. 27, рис. 28 и рис. 29 показана чувствительность эквивалентного момента инерции по оси x, коэффициента вязкого трения по оси y и движущейся массы по оси y соответственно. Можно сделать вывод, что полученные параметры применимы. Полученные данные позволяют дать нам представление о поведении моделируемой системы.
Чтобы определить параметр, для которого важно иметь более точные значения, выполняются следующие сравнения. Посредством сравнения рис. 26 и рис. 27 показано, что параметр эквивалентного момента инерции более чувствителен, чем коэффициент вязкого трения для оси x. Аналогично, для оси y параметр массы более чувствителен, чем коэффициент вязкого трения. Для сравнения чувствительности коэффициента вязкого трения по оси x с осью y в профиле положения на рис. 26 и рис. 28 сравниваются перемещения за определенный промежуток времени. В результате показано, что коэффициент вязкого трения по оси y более чувствителен, чем по оси x. Аналогично, для параметра инерции масса по оси y более чувствительна, чем эквивалентный момент инерции по оси х.
Рисунок 26
Рисунок 27
Рисунок 28
Рисунок 29
2.6. Настройка пид-регулятора
Вместо использования традиционных методов настройки контроллера, в качестве входных команд для модели привода подачи MATLAB Simulink, разработанной в предыдущих разделах для оценки производительности схемы ПИД-регулирования, использовались типичные команды движения, такие как показанные на рис.30. Этот метод настройки является распространенным и практичным в системе станкостроения, которая обычно включает в себя сложность динамики оси, высокое трение и люфт. Кроме того, поскольку точность модели уже проверена, использование модели для оценки новых конструкций управляющих элементов может значительно сэкономить время, когда дело доходит до реализации новых стратегий управления для достижения желаемой производительности.
Команда перемещения, показанная на рис.30, указывает, что ось перемещается на расстояние 0,1 м со скоростью подачи 0,5 м/с и с ускорением 4 м/с2. Эта скорость подачи и ускорение выбираются на основе максимальных значений, которых могут безопасно достигать оси x и y фрезерного станка лабораторного станка. Если для работы станка используются чрезмерная скорость подачи и ускорение, фрезерный станок может быть поврежден, причем повреждение обычно проявляется в виде царапины на ведущем винте оси x.
Считается, что это вызвано чрезмерным усилием между шариковым винтом и гидростатической гайкой, что приводит к разрушению гидростатической масляной пленки и возникновению прямого контакта металла с металлом. Этот металлический контакт создает царапину на ведущем винте, и эта царапина препятствует плавному перемещению стола по оси x. Кроме того, при использовании чрезмерной скорости подачи и ускорения на оси y может возникнуть нестабильность в виде вибрации между двумя линейными двигателями.
Рисунок 30
Учитывая заданный профиль пути, цель настройки состоит в том, чтобы найти правильные пропорциональные (P), интегральные (I) и дифференцирующие (D) коэффициенты усиления, которые позволяют системе иметь наименьшую последующую ошибку без превышения. Меньшая следующая ошибка означает более быструю реакцию. Однако ускорение реакции системы обычно приводит к превышению скорости, что нежелательно для точного станка. Следовательно, существует компромисс, и настройка – это просто процесс поиска хорошего компромисса между ними с использованием усиления контроллера P, I и D.
Увеличение коэффициента усиления P в попытке уменьшить следующую ошибку приводит к превышению и колебательному отклику. Коэффициент усиления I уменьшает ошибку позиционирования в установившемся режиме, но может привести к нежелательному интегральному условию. Коэффициент усиления D обычно используется в виде пропорциональной производной комбинированной формы, когда значительная инерция требует лучшей переходной характеристики.