
- •1. Экзаменационные вопросы
- •Ферменты. Номенклатура. Классификация ферментов.
- •Уровни организации ферментов.
- •Механизм действия ферментов. Понятие об активном центре фермента, этапы ферментативного катализа.
- •Кинетика ферментативных реакций. Зависимость скорости ферментативной реакции от различных факторов. Уравнение Михаэлиса-Ментен, роль Кm и Vmax в характеристике фермен- тов.
- •Ингибиторы ферментов. Типы ингибирования. Графическое представление зависимости скорости ферментативной реакции от присутствия ингибиторов различных типов.
- •Механизмы регуляции активности ферментов. Примеры.
- •Аллостерические ферменты. Регуляция их активности. При- меры.
- •Введение в обмен веществ. Биологическое окисление
- •Важнейшие признаки живой материи. Особенности живых организмов, как открытых термодинамических систем.
- •1 Закон термодинамики:
- •2 Закон термодинамики:
- •Обмен углеводов
- •1 Схема-
- •2 Схема-
- •3 Этап оу – промежуточный обмен
- •Роль фосфорилазы при мобилизации гликогена
- •Обмен аминокислот, белков и нуклеотидов
- •Глюкозо-аланиновый цикл
- •Реакции глюкозо-аланинового цикла (выделен рамкой). Реакции, связанные с транспортными формами аммиака
- •Обмен липидов и липопротеидов
- •Гидролиз эфиров холестерина
- •Стеаторея
- •Процесс β- окисления: локализация, последовательность реакций, ферменты. Биологическое значение. Регуляция процесса β-окисления. Энергетический эффект окисления вжк (на примере пальмитиновой кислоты).
- •Этапы биосинтеза желчных кислот
- •Регуляция синтеза желчных кислот
- •Образование вторичных желчных кислот. Энтерогепатический цикл.
- •Метаболизм кетоновых тел при голодании
- •Биологические мембраны. Перекисное окисление липидов
- •1. Основные мембраны клетки и их функции.
- •2. Строение и состав мембран: структура и свойства липидов,белков, углеводов мембран. Общие свойства мембран и их функции.
- •3. Трансмембранный перенос малых молекул. Типы переноса веществ через мембрану. Трансмембранный перенос макромолекул и частиц. Механизмы мембранного транспорта
- •Проницаемость плазматической мембраны
- •Пассивный транспорт
- •Простая диффузия
- •Облегченная диффузия
- •Особенности облегченной диффузии
- •Активный транспорт
- •Ионные каналы
- •Эндоцитоз
- •Экзоцитоз
- •Функции биологических мембран
- •4. Механизмы трансмембранной передачи гормонального сигнала в клетку.
- •5. Активные формы кислорода (афк). Биологическое действие афк. Ферментативные и неферментативные системы, генерирующие афк.
- •6. Стадии свободно-радикального окисления липидов.
- •7. Повреждающее действие первичных и вторичных продуктов пероксидного окисления на мембраны и другие структуры клетки.
- •8. Ферментативные системы антирадикальной защиты. Катализируемые реакции.
- •9. Неферментативные системы антирадикальной защиты и их физиологическое значение.
- •10. Роль афк в механизме фагоцитоза. Кислородзависимые и кислороднезависимые механизмы фагоцитоза. Роль афк в антимикробной защите грудного молока.
- •11.Роль пероксидного окисления при гипоксии (ишемии). Факторы гипоксии, инициирующие пол. Понятие о «кислородном» и «кальциевом» парадоксах.
- •12. Простагландины и лейкотриены: схема синтеза и их биологические функции.
- •Гормоны. Гормональная регуляция метаболических процессов
- •Регуляция синтеза и секреции
- •Механизм действия
- •Мишени и эффекты
- •Патология Гипофункция
- •Биохимия питания и печени. Нервная, мышечная и соединительная ткани. Биохимия крови
- •Метаболизм скелетных мышц ( поперечно-полосатые мышцы)
- •Метаболизм скелетных мышц ( поперечно-полосатые мышцы)
- •Двойственная роль креатинфосфата
- •Пути генерации атф и восстановление атф в мышечных клетках миокарда
- •Механизм мышечного сокращения
- •Этапы цикла мышечного сокращения
- •Миозиновая регуляция сокращения
- •Сравнение актин-миозинового взаимодействия в 2-х видах мышц
- •Механизм расслабления поперечнополосатого мышечного волокна
- •Метаболические нарушения при инфаркте миокарда
- •Лабораторная диагностика инфаркта миокарда
- •Обмен железа: основные функции, пул железа в организме, всасывание в жкт, «ферритиновый блок».
- •Поступление экзогенного железа в ткани из кишечника
- •Нарушение метаболизма железа
3. Трансмембранный перенос малых молекул. Типы переноса веществ через мембрану. Трансмембранный перенос макромолекул и частиц. Механизмы мембранного транспорта
Транспорт веществ через мембрану клетки осуществляется диффузией через липидный бислой или посредством двух классов мембранных белков — переносчиков или каналов.
Проницаемость плазматической мембраны
Если бы в плазматической мембране не присутствовали белки, легкость, с которой молекулы проходят сквозь фосфолипидный бислой по градиенту концентрации, зависела бы от размера молекулы, растворимости ее в жире и электрического заряда.
Малые жирорастворимые (неполярные) молекулы диффундируют быстро. Примеры: , . Крупные жирорастворимые молекулы, например, стероидные и тиреоидные гормоны, проходят через бислой с меньшей, но заметной скоростью.
Жиронерастворимые (полярные) молекулы способны проникать через бислой при условии малого размера и отсутствия полных зарядов. Примеры: , , мочевина. Большая проницаемость мембраны для воды обусловлена также наличием белковых каналов — аквапоринов. Также способны проходить через липидный бислой небольшие полярные молекулы этанола и глицерина.
Заряженные молекулы (ионы), даже при условии небольшого размера (, , ) практически не проникают через липидный бислой при отсутствии специальных транспортных механизмов.
Транспорт ионов и больших полярных молекул обеспечивается специальными трансмембранными белками. Так переносятся большие незаряженные полярные молекулы типа глюкозы и сахарозы.
Белки-переносчики передают вещества физическим движением одной части белковой молекулы относительно другой. Транспорт с помощью переносчиков может быть пассивным или активным (требует источник энергии).
Каналы транспортируют вещества по их электрохимическому градиенту. Такой транспорт не требует прямого расхода энергии и поэтому называется пассивным транспортом.
Пассивный транспорт
Пассивный транспорт может происходить непосредственно через фосфолипидный слой, через белки- переносчики или через белковые каналы.
Движущая сила может обеспечиваться:
разностью концентрации транспортируемого вещества (диффузия) или осмотического давления (осмос) на разных сторонах мембраны.
транспорт воды обеспечивается разностью осмотического давления с помощью белков-аквапоринов.
разностью электрического потенциала на мембране (если транспортируемое вещество несет заряд);
Простая диффузия
Простая диффузия — перенос веществ через мембрану по градиенту концентрации (из области высокой концентрации в область низкой концентрации) без затрат энергии.
происходит по электрохимическому градиенту;
скорость линейно зависит от градиента концентрации вещества;
не насыщаемый процесс, то есть может ускоряться неограниченно;
не расходуется энергия.
Путём простой диффузии в клетку проникают гидрофобные вещества (кислород, азот, бензол) и полярные маленькие молекулы (вода, углекислый газ, мочевина). Не проникают полярные относительно крупные молекулы (аминокислоты, моносахариды), заряженные частицы (ионы) и макромолекулы (ДНК, белки).
осмос
Диффузия воды через мембрану называется осмосом (см. тему "Осмос и осморегуляция").
Осмос — односторонняя диффузия растворителя (воды) через полупроницаемую мембрану в более концентрированный раствор.
Из-за того, что более концентрированный раствор содержит меньшую концентрацию молекул растворителя, в него путем диффузии просачивается растворитель из менее концентрированного раствора и разбавляет его до тех пор, пока концентрация не станет равной по обе стороны мембраны.
В случае, когда мембрана плохо проницаема, либо непроницаема для данного вещества, она подвергается действию осмотических сил. При более низкой концентрации вещества в клетке вода из нее выходит, и клетка сжимается, при более высокой концентрации — впускает внутрь воду, и клетка увеличивается в объеме.