Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Bkhkhkhkhkh.docx
Скачиваний:
16
Добавлен:
25.06.2022
Размер:
386.17 Кб
Скачать

Билет 9

1.Окислительное декарбоксилирование пировиноградной кис- лоты: схема процесса, связь с синтезом атф. Строение пи- руватдегидрогеназного комплекса: ферменты, коферменты, регуляция процесса.

Если в процессе катаболизма белков, жиров, углеводов образуется ПВК, для дальнейшего окисления, необходим переход её в ацетил КоА. Этот процесс называется окислительным декарбоксилированием пировиноградной кислоты. В нём заключено два вида реакций: окисление и образование СО2 путём разрушения карбоксильной группы. Окислительное декарбоксилирование пирувата осуществляется при участии пируватдегидрогеназного комплекса.

Состав полиферментного пируватдегидрогеназного комплекса Пируватдегидрогеназный комплекс (ПДК) молекулярной массой 6*106 дальтон, включает в себя три вида ферментов (Е1-Е3) и пять видов коферментов. 2 кофермента НАД и HS-КоА находятся в свободном состоянии и входят в состав комплекса только в момент реакции. Общий вид реакции окислительного декарбоксилирования пирувата:

Ферменты пируватдегидрогеназного комплекса:

Е1 – пируватдегидрогеназа (пируватдекарбоксилаза)

Е2 – дигидролипоилацетилтрансфераза

(трансацетилаза)

Е3 – дигидролипоилдегидрогеназа

Коферменты пируватдегидрогеназного комплекса:

1. Тиаминдифосфат (ТДФ, ТПФ), содержащий витамин В1,

кофактор пируватдегидрогеназы.

2. Липоевая кислота, кофактор трансацетилазы.

3. Кофермент ФАД, содержащий витамин В2, кофактор

дегидрогеназы дигидролипоевой кислоты.

4. Кофермент НАД, содержащий витамин РР.

5. Кофермент НS-КоА, содержащий аденин, рибозу, два

остатка фосфорной кислоты, пантотеновую кислоту

(витамин В3).

Окислительное декарбоксилирование ПВК протекает в несколько стадий, в процессе которых двухуглеродный фрагмент, образующийся из ПВК, переносится на липоевую кислоту, а затем на HS-КоА.

Биологическая роль окислительного декарбоксилирования пирувата заключается в том, что оно является важным этапом катаболизма, позволяющим включаться в цикл Кребса тем веществам, при распаде которых образуется ПВК. Образовавшаяся молекула НАДН2 окисляется в длинной дыхательной цепи с образованием 3-х молекул АТФ.

Окислительное декарбоксилирование пирувата протекает внутри митохондрий. Регуляция пируватдегидрогеназного комплекса осуществляется путём фосфолирирования, дефосфолирирования пируватдегидрогеназы Активаторами ПДК служат АДФ и НАД окисленный. Ингибиторами этого комплекса являются АТФ и НАДН2..

В состав ПДК входит пять витаминов.

По механизму «обратной связи» работу пируватдегидрогеназного комплекса ингибируют конечные продукты окислительного декарбоксилирования - ацетил-KоА, НАДН + Н+, а также АТФ. Увеличивает активность комплекса пировиноградная кислота. Также имеется регуляция со стороны гормонов: инсулин увеличивает активность комплекса, глюкагон - снижает. Первую реакцию катализирует Е1, субстратами являются ПВК и дегидролипоевая кислота, являющаяся простетической группой Е2. От ПВК отщепляется карбоксильная группа и образуется СО2, а ацетильный остаток соединяется с атомомсеры липоевой кислоты в составе ацетилтрансферазы. Получается ацетиллипоат-Е2.

Во второй реакцииацетилтрансфераза (Е2) катализирует перенос ацетильного остатка, соединенного с его собственной простетической группой, на коэнзим А. Продукты этой реакции - дигидролипоевая кислота в составе Е2 и ацетил-КоА.

В третьей реакциипроисходит дегидрирование дигидролипоевой кислоты в составе ацетилтрансферазы при воздействии фермента Е3 (дегидрогеназа дигидролипоевой кислоты), содержащего ФАД. ФАД передает водород на НАД. Образуются НАДН, Н+ и дегидролипоевая кислота в составе Е2. Последний фермент снова вступает в окислительное декарбоксилирование ПВК.

2.Молекулярные механизмы малигнизации клеток.

Канцерогенез - это процесс развития опухолей любого типа. Последняя стадия опухолевого роста, с видимыми проявлениями , манифестация получил название малигнизации ( озлакочествление). Общие признаки малигнизации:

1. Клетка приобретает способность к бесконтрольному , безудержному размножению, делению

2. Гиперплазия параллельно с бесконтрольным делением клеток, наблюдается нарушение дифференцировки, остается незрелой, молодой ( это свойство называется анаплазией).

3. Автономность ( независимый от организма), от контролирующей, регулирующей процессы жизнедеятельности стимулов. Чем быстрее растет опухоль, тем как правило менее дифференцированны клетки и больше выражена автономность опухоли.

4. Доброкачественная опухоль характеризуется нарушением пролиферации, нет нарушения дифференцировки, при росте доброкачественной опухоли клетки просто увеличиваются в количестве, раздвигая или сдавливая окружающие ткани. А для злокачественных опухолей характерен так называемый инфильтративный рост, опухолевые клетки прорастают ( как клетки рака) разрушая окружающие ткани.

5. Способность к метастазированию. Метастазы - это клетки которые могут гематогенным, лимфогенным путем разноситься по всему организму и образовывать очаги опухолевого процесса. Метастазы - это признак злокачественной опухоли.

6. Опухолевая ткань оказывает на организм в целом негативное влияние : интоксикация, вызванная продуктами метаболизма опухоли, распада опухоли. Кроме того опухоль лишает организм необходимых питательных веществ, энергетических субстратов, пластических компонентов.

Атипизм опухолевых клеток характеризуется как возврат к прошлому то есть переходом на более простые пути метаболизма . Существует множество признаков, отличающих нормальные клетки от опухолевых:

1. Морфологический атипизм. Главным является изменение клеточной мембраны:

У опухолевых клеток уменьшается площадь поверхности соприкосновения, уменьшается количество нексусов - контактов, обеспечивающих адгезивность клеточных мембран, меняется состав мембранных гликопротеидов - укорачиваются углеводные цепи. В клетке начинают синтезироваться , несвойственные зрелым клеткам эмбриональные белки, повышается количество фосфотирозинов. Все это приводит и к нарушению свойств контактного торможения, повышается лабильность, текучесть мембраны. В норме клетки, вступая в контакт друг с другом прекращают деление ( имеет место саморегуляция процесса деления). В опухолевых клетках отсутствие контактного торможения приводит к безудержной пролиферации.

2.Биохимический атипизм. Атипизм энергетического обмена проявляется в преобладании гликолиза - более древнего пути метаболизма. В опухолевых клетках наблюдается интенсивный анаэробный гликолиз Опухоль активно поглощает питательные вещества. Наблюдается феномен субстратных ловушек, который заключается в повышении сродства фермента к субстрату ( глюкозе), в опухолевых клетках в 1000 раз повышается активность гексокиназ. Клетки опухоли являются также ловушкой для белка что также приводит к кахексии.

Преобладание гликолиза приводит к повышению концентрации молочной кислоты в клетках опухоли, характерен ацидоз, приводящий к нарушению жизнедеятельности самой клетки ( зона некроза расположена обычно в центре опухоли).

Возрастает синтез рибонуклеотид – редуктазы, снижается катаболизм пиримидиновых и пуриновых нуклеотидов, увеличивается синтез ДНК и РНК, увелчивается количество фетальных форм ферментов

3.Атипизм регуляции роста и дифференцировки опухолевых клеток. Процессы роста , дифференцировки деления в норме находятся под контролем центральной эндокринной регуляции, которая осуществляется соматотропным гормоном, гормонами щитовидной железы, инсулином. Кроме этих общих факторов , в каждой ткани существуют свои факторы роста и дифференцировки ( фактор роста эпидермиса, тромбоцитарный фактор, интерлейкин). Индукция роста и дифференцировки начинается с взаимодействия фактора роста с рецептором фактора роста на клеточной мембране ( в опухолевой клетке этот этап может быть нарушен). На следующем этапе образуются вторичные посредники - циклический аденозин и гуанозинмонофосфат, причем для нормального роста и дифференцировки характерно преобладание циклического аденозинмонофосфата ( цАМФ). Образование циклического гуанозинмонофосфата сочетается с усилением пролиферации. В опухолевых клетках это типичный признак.

Регуляция роста и дифференцировки опухолевой клетки связана также с кальций-зависимой протеинкиназой. В норме кальций-зависимая протеинкиназа выполняет функцию модулятора, она выполняет роль индуктора пролиферации, она стимулирует образование фосфотирозина и усиливает

14. Антидиуретический гормон (вазопрессин): химическая природа, механизм действия, органы-мишени, биологические эффекты. Несахарный диабет.

Антидиуретический гормон:

Строение:

Представляет собой пептид, включающий 9 аминокислот, с периодом полураспада 2-4 минуты.

Синтез:

Осуществляется в супраоптическом и паравентрикулярном ядрах гипоталамуса. Отсюда в точку секреции (заднюю долю гипофиза) вазопрессин отправляется в виде прогормона, состоящего из двух частей – собственно АДГ и нейрофизина. В ходе транспортировки происходит процессинг – гидролиз проАДГ на зрелый гормон и белок нейрофизин.

Регуляция синтеза и секреции:

Уменьшают: этанол, глюкокортикоиды.

Активируют:

•​возбуждение осморецепторов в гипоталамусе и в портальной вене печени из-за повышения осмолярности плазмы при обезвоживании, почечной или печеночной недостаточности, накоплении осмотически активных веществ (глюкоза),

•​активация барорецепторов сердца и каротидного синуса при снижении объема крови в сосудистом русле (кровопотери, обезвоживание),

•​эмоциональный и физический стресс,

•​никотин, ангиотензин II, интерлейкин 6, морфин, ацетилхолин.

Механизм действия:

Зависит от рецепторов:

1. Кальций-фосфолипидный механизм, сопряжен:

•​с V1-рецепторами гладких мышц артериол, печени, тромбоцитов,

•​с V3-рецепторами аденогипофиза и структур головного мозга.

2. Аденилатциклазный механизм – с V2-рецепторами почечных канальцев.

Мишени и эффекты:

Почки:

Увеличивает реабсорбцию воды в эпителиоцитах дистальных канальцев и собирательных трубочек, благодаря "выставлению" на мембрану транспортных белков для воды – аквапоринов:

•​через аденилатциклазный механизм вызывает фосфорилирование молекул аквапоринов (только тип 2, AQP2), их взаимодействие с белками микротубул и путем экзоцитоза встраивание аквапоринов в апикальную мембрану,

•​по тому же механизму стимулирует синтез аквапоринов de novo.

Сосудистая система:

Поддерживает стабильное давление крови, стимулируя тонус сосудов:

•​повышает тонус гладких мышц сосудов кожи, скелетных мышц и миокарда (в меньшей степени),

•​повышает чувствительность механорецепторов в каротидных синусах к изменениям артериального давления,

Иные эффекты:

Метаболические эффекты:

Избыточное количество вазопрессина в крови:

•​у голодных животных в печени активирует гликогенолиз, что вызывает выход глюкозы в кровь,

•​у сытых животных в печени стимулирует гликолиз, который здесь является началом синтеза ТАГ и холестерола,

•​усиливает секрецию глюкагона,

•​понижает липолитический эффект катехоламинов в жировой ткани,

•​усиливает секрецию АКТГ и, следовательно, синтез глюкокортикоидов.

В целом эффект вазопрессина на гормональный и метаболический статус организма сводится к гипергликемии и накоплению липидов.

Головной мозг:

•​участвует в механизмах памяти и поведенческих аспектах стресса,

•​через V3-рецепторы стимулирует в кортикотрофах секрецию АКТГи пролактина,

•​повышает болевой порог чувствительности,

•​повышение концентрации вазопрессина и дисбаланс вазопрессин/окситоцин отмечается при депрессии, тревоге, шизофрении, аутизме, расстройствах личности. В эксперименте вазопрессин вызывает у крыс агрессивное поведение и тревожность.

Костная ткань:

•​Поддерживает обновление структур и минерализацию кости, усиливая активность как остеобластов, так и остеокластов.

Сосудистая система:

Влияет на гемостаз, в целом повышая вязкость крови:

•​в эндотелии вызывает образование фактора Виллебранда, антигемофильного глобулина А (фактора свертывания VIII) и тканевого активатора плазминогена (t-PA),

•​в печени также повышает синтез VIII фактора свертывания,

•​усиливает агрегацию и дегрануляцию тромбоцитов.

Гипофункция проявляется в виде несахарного диабета, частота примерно 0,5% всех эндокринных заболеваний. Проявляется большим объемом мочи до 8 л/сутки, жаждой и полидипсией, сухостью кожи и слизистых, вялостью, раздражительностью.

Существуют разные причины гипофункции:

1. Первичный несахарный – дефицит АДГ при нарушении синтеза или повреждениях гипоталамо-гипофизарного тракта (переломы, инфекции, опухоли);

2. Нефрогенный несахарный диабет:

•​наследственный – нарушение рецепции АДГ в канальцах почек,

•​приобретенный – заболевания почек, повреждение канальцев солями лития при лечении больных психозами.

3. Гестагенный (при беременности) – повышенный распад вазопрессина аргинин-аминопептидазой плаценты.

4. Функциональный – временное (у детей до года) повышение активности фосфодиэстеразы в почках, приводящее к нарушению действия вазопрессина