
- •Билет 1
- •1. Классификация ферментов
- •2. Глюкагон все о нем
- •3. Мутации митохондриальных генов
- •Билет 2
- •Билет №_(3)
- •Билет 4
- •4. Ограниченный (частичный) протеолиз проферментов
- •5. Аллостерическая регуляция
- •2. Особенности энергетического обмена нервной ткани
- •3. Механизм действия наркотиков дофа
- •Билет 6
- •1.Субстратное фосфорилирование.
- •2.Механизмы трансмембранной передачи гормональногосигнала в клетку.
- •3.Эндотелиальная дисфункция и развитие ибс. Роль no
- •Билет 9
- •1.Окислительное декарбоксилирование пировиноградной кис- лоты: схема процесса, связь с синтезом атф. Строение пи- руватдегидрогеназного комплекса: ферменты, коферменты, регуляция процесса.
- •Билет 10
- •Билет 11
- •Билет 12
- •Билет 13
- •2)Функции сосудистого эндотелия, субэндотелия, тромбоцитов
- •3) Диагностика панкреатита
- •Билет 16
- •2.Роль афк в механизме фагоцитоза. Кислород зависимые и кислороднезависимые механизмы фагоцитоза.Роль афк в антимикробной защите грудного молока
- •3 Метаболические механизмы алкоголизма.
- •Билет 17
- •Билет 18
- •2. Альдостерон.
- •Билет 19
- •Билет 20
- •Билет 26
- •1) Хиломикроны…
- •2) Адреналин- химическая природа, органы мишени, биологические эффекты
- •3) Моноклональные антитела, препараты на их основе против опухолей.
- •Билет 27
- •1. Понятие о процессах катаболизма и анаболизма. Функцииклеточного метаболизма. Стадиигенерирования энергии по Кребсу.
- •Билет 28
- •3.Эпидермальный фактор роста и а-фетопротеин : их использование в качестве векторов
- •Билет 31
- •Билет 36
- •Билет 37
- •3. Теломераза
- •Билет 38
- •1) Холестерин, его биосинтез, метаболическая и гуморальная регуляция
- •2) Молекулярные механизмы развития инфаркта миокарда, методы диагностики
- •3) Синтез коллагена
- •Билет 39
- •Билет 40
- •1 Трансмембранный перенос макромолекул
- •2 Мочевина в цтк
- •Билет 41
Билет 2
1 есть
2 есть
3 Клеточные рецепторы
Клеточный рецептор — молекула (обычно белок или гликопротеин) на поверхности клетки, клеточных органелл или растворенная в цитоплазме. Специфично реагирует изменением своей пространственной конфигурации на присоединение к ней молекулы определённого химического вещества, передающего внешний регуляторный сигнал и, в свою очередь, передает этот сигнал внутрь клетки или клеточной органеллы, нередко при помощи так называемых вторичных посредников или трансмембранных ионных токов.
Мембранные рецепторы Править
Основная статья: Трансмембранные рецепторы
Очень часто у белков есть гидрофобные участки, которые взаимодействуют с липидами, и гидрофильные участки, которые находятся на поверхности мембраны клетки, соприкасаясь с водным содержимым клетки. Большинство мембранных рецепторов — именно такие трансмембранные белки.
Многие из мембранных белков-рецепторов связаны с углеводными цепями, то есть представляют собой гликопротеиды. На их свободных поверхностях находятся олигосахаридные цепи (гликозильные группы), похожие на антенны. Такие цепочки, состоящие из нескольких моносахаридных остатков, имеют самые различные формы, что объясняется разнообразием связей между моносахаридными остатками и существованием α- и β-изомеров.
Функция «антенн» — это распознавание внешних сигналов. Распознающие участки двух соседних клеток могут обеспечивать сцепление клеток, связываясь друг с другом. Благодаря этому клетки ориентируются и создают ткани в процессе дифференцировки. Распознающие участки присутствуют и в некоторых молекулах, которые находятся в растворе, благодаря чему они избирательно поглощаются клетками, имеющими комплементарные распознающие участки (так, например, поглощаются ЛПНП с помощью рецепторов ЛПНП).
Два основных класса мембранных рецепторов — это метаботропные рецепторы и ионотропные рецепторы.
Ионотропные рецепторы представляют собой мембранные каналы, открываемые или закрываемые при связывании с лигандом. Возникающие при этом ионные токи вызывают изменения трансмембранной разности потенциалов и, вследствие этого, возбудимости клетки, а также меняют внутриклеточные концентрации ионов, что может вторично приводить к активации систем внутриклеточных посредников. Одним из наиболее полно изученных ионотропных рецепторов является н-холинорецептор.
Метаботропные рецепторы связаны с системами внутриклеточных посредников. Изменения их конформации при связывании с лигандом приводит к запуску каскада биохимических реакций, и, в конечном счете, изменению функционального состояния клетки. Основные типы мембранных рецепторов:
Рецепторы, связанные с гетеротримерными G-белками (например, рецептор вазопрессина).
Рецепторы, обладающие внутренней тирозинкиназной активностью (например, рецептор инсулина или рецептор эпидермального фактора роста).
Рецепторы, связанные с G-белками, представляют собой трансмембранные белки, имеющие 7 трансмембранных доменов, внеклеточный N-конец и внутриклеточный C-конец. Сайт связывания с лигандом находится на внеклеточных петлях, домен связывания с G-белком — вблизи C-конца в цитоплазме.
Активация рецептора приводит к тому, что его α-субъединица диссоциирует от βγ-субъединичного комплекса и таким образом активируется. После этого она либо активирует, либо наоборот инактивирует фермент, продуцирующий вторичные посредники.
Рецепторы с тирозинкиназной активностью фосфорилируют последующие внутриклеточные белки, часто тоже являющиеся протеинкиназами, и таким образом передают сигнал внутрь клетки. По структуре это — трансмембранные белки с одним мембранным доменом. Как правило, гомодимеры, субъединицы которых связаны дисульфидными мостиками.
Внутриклеточные рецепторы Править
Внутриклеточные рецепторы — как правило, факторы транскрипции (например, рецепторы глюкокортикоидов) или белки, взаимодействующие с факторами транскрипции. Большинство внутриклеточных рецепторов связываются с лигандами в цитоплазме, переходят в активное состояние, транспортируются вместе с лигандом в ядро клетки, там связываются с ДНК и либо индуцируют, либо подавляют экспрессию некоторого гена или группы генов.
Особым механизмом действия обладает оксид азота (NO). Проникая через мембрану, этот гормон связывается с растворимой (цитозольной) гуанилатциклазой, которая одновременно является и рецептором оксида азота, и ферментом, который синтезирует вторичный посредник — цГМФ.