
- •Билет 1
- •1. Классификация ферментов
- •2. Глюкагон все о нем
- •3. Мутации митохондриальных генов
- •Билет 2
- •Билет №_(3)
- •Билет 4
- •4. Ограниченный (частичный) протеолиз проферментов
- •5. Аллостерическая регуляция
- •2. Особенности энергетического обмена нервной ткани
- •3. Механизм действия наркотиков дофа
- •Билет 6
- •1.Субстратное фосфорилирование.
- •2.Механизмы трансмембранной передачи гормональногосигнала в клетку.
- •3.Эндотелиальная дисфункция и развитие ибс. Роль no
- •Билет 9
- •1.Окислительное декарбоксилирование пировиноградной кис- лоты: схема процесса, связь с синтезом атф. Строение пи- руватдегидрогеназного комплекса: ферменты, коферменты, регуляция процесса.
- •Билет 10
- •Билет 11
- •Билет 12
- •Билет 13
- •2)Функции сосудистого эндотелия, субэндотелия, тромбоцитов
- •3) Диагностика панкреатита
- •Билет 16
- •2.Роль афк в механизме фагоцитоза. Кислород зависимые и кислороднезависимые механизмы фагоцитоза.Роль афк в антимикробной защите грудного молока
- •3 Метаболические механизмы алкоголизма.
- •Билет 17
- •Билет 18
- •2. Альдостерон.
- •Билет 19
- •Билет 20
- •Билет 26
- •1) Хиломикроны…
- •2) Адреналин- химическая природа, органы мишени, биологические эффекты
- •3) Моноклональные антитела, препараты на их основе против опухолей.
- •Билет 27
- •1. Понятие о процессах катаболизма и анаболизма. Функцииклеточного метаболизма. Стадиигенерирования энергии по Кребсу.
- •Билет 28
- •3.Эпидермальный фактор роста и а-фетопротеин : их использование в качестве векторов
- •Билет 31
- •Билет 36
- •Билет 37
- •3. Теломераза
- •Билет 38
- •1) Холестерин, его биосинтез, метаболическая и гуморальная регуляция
- •2) Молекулярные механизмы развития инфаркта миокарда, методы диагностики
- •3) Синтез коллагена
- •Билет 39
- •Билет 40
- •1 Трансмембранный перенос макромолекул
- •2 Мочевина в цтк
- •Билет 41
3. Теломераза
Теломераза — фермент, добавляющий особые повторяющиеся последовательности нуклеотидов ДНК (TTAGGG у позвоночных) к 3'-концу цепи ДНК на участках теломер, которые располагаются на концах хромосом в эукариотических клетках. Теломеры содержат уплотнённую ДНК и стабилизируют хромосомы. При каждом делении клетки теломерные участки укорачиваются. Существование механизма, компенсирующего укорочение теломер (теломеразы), было предсказано в 1973 году А. М. Оловниковым[1].
Теломераза является обратной транскриптазой, причём с ней связана особая молекула РНК, которая используется в качестве матрицы для обратной транскрипции во время удлинения теломер.
Теломераза - это фермент-"удлинитель", его функция - достраивать концевые участки линейных молекул ДНК, "пришивая" к ним повторяющиеся нуклеотидные последовательности - теломеры. Клетки, в которых функционирует теломераза (половые, раковые), бессмертны.
Билет 38
1) Холестерин, его биосинтез, метаболическая и гуморальная регуляция
Холестерин (др.-греч. χολή «жёлчь» + στερεός «твёрдый»), холестерол — органическое соединение, природный полициклический липофильный спирт, содержащийся в клеточных мембранах всех животных, в том числе человека, однако его нет в клеточных мембранах растений, грибов, а также у прокариотических организмов (археи, бактерии и т.д.)
Холестерин может образовываться в животном организме и поступать в него с пищей.
Превращение трёх молекул активного ацетата в пятиуглеродный мевалонат. Происходит в ГЭПР.
Превращение мевалоната в активный изопреноид — изопентенилпирофосфат.
Образование тридцатиуглеродного изопреноида сквалена из шести молекул изопентенилдифосфата.
Циклизация сквалена в ланостерин.
Последующее превращение ланостерина в холестерин.
У некоторых организмов при синтезе стероидов могут встречаться другие варианты реакций (например, немевалонатный путь образования пятиуглеродных молекул).
Холестерин в составе клеточной плазматической мембраны играет роль модификатора бислоя, придавая ему определённую жёсткость за счёт увеличения плотности «упаковки» молекул фосфолипидов. Таким образом, холестерин — стабилизатор текучести плазматической мембраны[5].
Холестерин открывает цепь биосинтеза стероидных половых гормонов и кортикостероидов[6], служит основой для образования желчных кислот и витаминов группы D[7][8], участвует в регулировании проницаемости клеток и предохраняет эритроциты крови от действия гемолитических ядов[7][8].
Холестерин нерастворим в воде и в чистом виде не может доставляться к тканям организма при помощи основанной на воде крови. Вместо этого холестерин в крови находится в виде хорошо растворимых комплексных соединений с особыми белками-транспортерами, так называемыми аполипопротеидами. Такие комплексные соединения называются липопротеидами.
Существует несколько видов аполипопротеидов, различающихся молекулярной массой, степенью сродства к холестерину и степенью растворимости комплексного соединения с холестерином (склонностью к выпадению кристаллов холестерина в осадок и к формированию атеросклеротических бляшек). Различают следующие группы: высокомолекулярные (HDL, ЛПВП, липопротеиды высокой плотности) и низкомолекулярные (LDL, ЛПНП, липопротеиды низкой плотности), а также очень низкомолекулярные (VLDL, ЛПОНП, липопротеиды очень низкой плотности) и хиломикрон.
К периферийным тканям холестерин транспортируется хиломикроном, ЛПОНП и ЛПНП. К печени (из которой затем холестерин удаляется из организма) его транспортируют аполипротеины группы ЛПВП.