
- •Билет 1
- •1. Классификация ферментов
- •2. Глюкагон все о нем
- •3. Мутации митохондриальных генов
- •Билет 2
- •Билет №_(3)
- •Билет 4
- •4. Ограниченный (частичный) протеолиз проферментов
- •5. Аллостерическая регуляция
- •2. Особенности энергетического обмена нервной ткани
- •3. Механизм действия наркотиков дофа
- •Билет 6
- •1.Субстратное фосфорилирование.
- •2.Механизмы трансмембранной передачи гормональногосигнала в клетку.
- •3.Эндотелиальная дисфункция и развитие ибс. Роль no
- •Билет 9
- •1.Окислительное декарбоксилирование пировиноградной кис- лоты: схема процесса, связь с синтезом атф. Строение пи- руватдегидрогеназного комплекса: ферменты, коферменты, регуляция процесса.
- •Билет 10
- •Билет 11
- •Билет 12
- •Билет 13
- •2)Функции сосудистого эндотелия, субэндотелия, тромбоцитов
- •3) Диагностика панкреатита
- •Билет 16
- •2.Роль афк в механизме фагоцитоза. Кислород зависимые и кислороднезависимые механизмы фагоцитоза.Роль афк в антимикробной защите грудного молока
- •3 Метаболические механизмы алкоголизма.
- •Билет 17
- •Билет 18
- •2. Альдостерон.
- •Билет 19
- •Билет 20
- •Билет 26
- •1) Хиломикроны…
- •2) Адреналин- химическая природа, органы мишени, биологические эффекты
- •3) Моноклональные антитела, препараты на их основе против опухолей.
- •Билет 27
- •1. Понятие о процессах катаболизма и анаболизма. Функцииклеточного метаболизма. Стадиигенерирования энергии по Кребсу.
- •Билет 28
- •3.Эпидермальный фактор роста и а-фетопротеин : их использование в качестве векторов
- •Билет 31
- •Билет 36
- •Билет 37
- •3. Теломераза
- •Билет 38
- •1) Холестерин, его биосинтез, метаболическая и гуморальная регуляция
- •2) Молекулярные механизмы развития инфаркта миокарда, методы диагностики
- •3) Синтез коллагена
- •Билет 39
- •Билет 40
- •1 Трансмембранный перенос макромолекул
- •2 Мочевина в цтк
- •Билет 41
3) Диагностика панкреатита
развернутый клинический анализ крови;
биохимический анализ крови;
анализы мочи – общий и на амилазу;
анализ кала;
УЗИ органов брюшной полости;
УЗИ поджелудочной железы;
УЗИ печени.
Полагаться в диагностике на обычные клинические лабораторные исследования не приходится. В фазу обострения болезни может быть умеренно повышено количество лейкоцитов в периферической крови, а также СОЭ, уменьшен уровень альбуминов и несколько увеличен уровень гамма-глобулинов. Однако это не специфично.
Необходимы комплексные инструментальные и лабораторные исследования. В ходе обследования выделяют три этапа:
1. Определение признаков заболевания именно ПЖ, а не других органов.
2. Исключение других заболеваний ПЖ, например, злокачественных.
3. Поиск причин, которые привели к панкреатиту.
Задача с непрямым билирубином
Билет 16
.1.Трансаминирование АК
Трансаминирование – реакции переноса -аминогруппы с аминокислоты на -кетокислоту, в результате чего образуются новая кетокислота и новая аминонокислота. Реакции катализируют ферменты аминотрансферазы. Это сложные ферменты, коферментом которых является производное витамина В6 – пиридоксальфосфат, который обратимо может переходить в пиридоксаминфосфат. Реакции трансаминирования обратимы, и могут проходить как в цитоплазме, так и в митохондриях клеток. В клетках человека найдено более 10 аминотрансфераз, отличающихся по субстратной специфичности. Вступать в реакции трансаминирования могут почти все аминокислоты, за исключением лизина, треонина и пролина.
Реакции трансаминирования протекают в 2 стадии. На первой стадии к пиридоксальфосфату в активном центре фермента присоединяется аминогруппа от первого субстрата – аминокислоты. Образуется комплекс фермент- пиридоксаминфосфат и кетокислота – первый продукт реакции. Этот процесс включает промежуточное образование 2 шиффовых оснований (альдимин и кетимин).
На второй стадии пиридоксаминфосфат соединяется с новой кетокислотой (второй субстрат) и снова через промежуточное образование 2 шиффовых оснований передает аминогруппу на кетокислоту. В результате фермент возвращается в свою нативную форму, и образуется новая аминокислота – второй продукт реакции.
Чаще всего в реакциях трансаминирования участвуют аминокислоты, содержание которых в тканях значительно выше остальных – глутамат, аланин, аспартат. Наиболее распространенными в большинстве тканей являются аланинаминотрансфераза (АлАТ) и аспартатаминотрансфераза (АсАТ).
Наибольшая активность АсАТ обнаруживается в клетках сердечной мышцы и печени, в то время как в крови обнаруживается только фоновая активность АлАТ и АсАТ. Поэтому можно говорить об органоспецифичности этих ферментов, что позволяет их широко примененятьих с диагностической целью (при инфарктах миокарда и гепатитах).
2.Роль афк в механизме фагоцитоза. Кислород зависимые и кислороднезависимые механизмы фагоцитоза.Роль афк в антимикробной защите грудного молока
Кислородзависимые механизмы
Считается, что начальным этапом в образовании биоцидных кислородных радикалов и метаболитов является восстановление молекулярного кислорода НАДФН-оксидазой с образованием супероксидного анион-радикала, который становится родоначальником других биоцидных соединений. Образовавшийся радикал кислорода не обладает бактерицидным свойством. Оно характерно для Н2О2, образующегося при дисмутации кислотного радикала и спонтанно.
Пероксид водорода может оказывать бактерицидное действие особенно в присутствии аскорбиновой кислоты и Fe , но это действие несравнимо с эффектом в присутствии миелопероксидазы. (МПО)
МПО- фермент, синтез которого происходит на стадии промиелоцита, после чего миелопероксидаза локализуется в азурофильных гранулах нейтрофильных гранулоцитах.
Кислороднезависимые механизмы
Кроме перечисленных восстановленных дериватов кислорода, бактерицидное действие обеспечивается ещё рядом факторов. Прежде всего, это высокая концентрация Н, возникающа при диссоциации конечного продукта анаэробного гликолиза- лактата. В течение нескольких минут фагоцитоза рН в агосомах снижается до 4-5, что уже само по себе действует бактерицидно на некоторые микроорганизмы. С другой стороны, это создаёт оптимальные условия для действия гидролаз, находящихся в гранулах, которые устраняют погибшие микробные тела. В этом им помогает лизоцим (аминополисахаридаза), который расщепляет полисахаридные цепи протеогликанового слоя клеточной стенки.
Бактерицидным действием обладает и комплекс белков(катионные белки), называемых фагоцитином. Этот комплекс представляет собой смесь пептидов- дефензинов.
Различают специфические и неспецифические факторы антимикробной защиты грудного молока. К специфическим относят иммуноглобулины. В грудном молоке особенно в первые дни лактации довольно значительно содержание иммуноглобулинов А и С. К неспецифическим факторам относят ксантиноксидазу, лактопероксидазу, лактоферрин, лизоцим, компоненты комплемента, а также клеточные элементы, обладающие фагоцитирующей активностью и способностью вырабатывать бактерицидные вещества – нейтрофилы и макрофаги.
Это деление сугубо условно, ибо не отражает истинного положения дел, т.к. все эти факторы объединяются для выполнения антимикробной функции в единую антимикробную систему.
Следует сразу оговориться, что речь идёт не вообще об антимикробном действии грудного молока, а о целенаправленном уничтожении патогенных бактерий. Это необходимо отметить, потому что с первых минут контакта ребёнка с окружающей средой начинается заселение кишечного тракта ребёнка микроорганизмами, образующими так называемую, нормофлору кишечника (кишечная палочка, лактобациллы и другие микроорганизмы, принимающие в дальнейшем активное участие в жизнедеятельности микроорганизма).
Избирательность антимикробного действия грудного молока, конечно, обеспечивается специфическими иммунными белками-лактоглобулинами. Благодаря наличию специфических антигенных детерминант, лактоглобулины связывают патогенные бактерии, образуя иммунные комплексы. Иммунные комплексы, по-видимому, сами обладают способностью связывать ксантиноксидазу, лактопероксидазу и другие неспецифические факторы, либо подобная система образуется на поверхности фагоцитирующих клеток, благодаря наличию соответствующих рецепторов.
Именно эта система и обеспечивает единое антимикробное действие. Механизм заключается в том, что ксантиноксидаза окисляет ксантин либо гипоксантин и образует супероксидный анион-радикал – ведущую активную форму кислорода в процессах свободнорадикального окисления. Многие вирулентные бактерии в процессе эволюции выработали механизмы защиты от бактерицидных факторов и в случае супероксидного анион-радикала действует бактериальная СОД, превращающая анион-радикал в перекись водорода. Этот момент, вероятно, является кульминационным в борьбе микро- и макроорганизма. Нейтрализуя супероксидный анион-радикал путём образования перекиси водорода, патогенные вирулентные бактерии вызывают ещё больший огонь на себя, запуская в действие лактопероксидазу, для которой перекись водорода является необходимым субстратом. Используя перекись водорода, лактопероксидаза образует тиоционат-ионы, способные подобно гипохлорит-иона разрушать белковые молекулы. Лактоферрин освобождает двухвалентное железо и катализирует распад перекиси водорода с образованием гидроксильного радикала атакующего жирные кислоты бактериальных липидов. Благодаря сочетанному действию этих и других факторов (лизоцим разрушает полисахариды клеточной бактериальной стенки) важнейшие структуры бактериальных клеток подвергаются деструкции, что и приводит к гибели бактерии. Если эти процессы разыгрываются на поверхности нейтрофилов и макрофагов, последующее поглощение убитых бактерий завершается в фаголизосомах. Если же антибактериальные факторы действуют только в комплексе с иммуноглобулинами, убитые бактерии, уже не представляющие опасности для организма ребёнка, просто выводятся.
Для коррекции нарушений пищеварения при внешнесекреторной недостаточности поджелудочной железы наиболее эффективными оказались микрокапсулированные препараты ферментов, покрытые кислотоустойчивой оболочкой. В чём преимущество такой формы упаковки пищеварительных ферментов перед использовавшимися ранее порошками и таблеткам?
Микрокапсулы, содержащие ферменты поджелудочной железы, благодаря малому размеру лучше перемешиваются с химусом в желудке, а кислотоустойчивая оболочка предохраняет от денатурирующего действия соляной кислоты. Их последующее перемещение вместе с химусом в двенадцатиперстную кишку и растворение обеспечивают максимальный контакт действующего вещества с субстратами.