
- •Оглавление
- •Раздел 1. Изоляция электрических систем и сетей и
- •Раздел 2. Воздействие грозовых перенапряжений на изоляцию
- •Раздел 3. Воздействие внутренних перенапряжений
- •Предисловие
- •Раздел 1. Изоляция электрических систем и сетей и распределительных устройств
- •Основные виды электрической изоляции вл и ру
- •1.2. Напряжения, воздействующие на изоляцию
- •1.3. Коэффициент однородности электрического поля
- •1.4. Виды токов в изоляции
- •1.5. Диэлектрические потери и угол потерь
- •1.6. Общие сведения о пробое диэлектриков
- •1.7. Атмосферный воздух как диэлектрик. Электрическая
- •1.8. Вольтамперная характеристика газового промежутка
- •1.9. Пробой воздушного промежутка с однородным полем
- •1.10. Закон Пашена
- •1.11. Особенности пробоя газового промежутка с резконеоднородным полем
- •1.12. Перекрытие изоляции
- •1.13. Статистика разрядных напряжений
- •1.14. Испытания внешней изоляции. Стандартный грозовой
- •1.15. Изоляторы
- •1.15.1. Общие представления и основные характеристики изоляторов
- •1.15.2. Конструкции и маркировка изоляторов
- •1.16. Распределение напряжения вдоль гирлянды изоляторов
- •1.17. Развитие разряда в гирлянде по поверхности сухих изоляторов, под дождем и при увлажненном загрязнении
- •1.18. Выбор изоляции вл постоянного и переменного тока
- •1.19. Эксплуатационный контроль изоляции
- •1.20. Коронный разряд на проводах вл постоянного
- •1.21. Выбор конструкции фазы вл
- •1.22. Потери энергии на местную корону
- •1.23. Экологическое влияние вл
- •1.24. Внутренняя изоляция. Общие представления и свойства
- •1.25. Комбинирование диэлектрических материалов во внутренней изоляции
- •1.26. Основные виды внутренней изоляции
- •1.27. Пробой жидких диэлектриков
- •1.28. Пробой твердых диэлектриков
- •1.29. Зависимость электрической прочности внутренней изоляции от длительности воздействия напряжения
- •1.30. Длительная и кратковременная электрическая прочность
- •1.31. Старение изоляции
- •1.32. Регулирование электрического поля
- •1.33. Градирование изоляции
- •1.34. Применение конденсаторных обкладок
- •1.35. Применение полупроводниковых покрытий
- •1.36. Изоляция открытых и закрытых распределительных устройств
- •1.36.1. Изоляция вводов высокого напряжения
- •1.36.2. Изоляция трансформаторов тока
- •1.36.3. Изоляция масляных выключателей
- •1.36.5. Изоляция силовых конденсаторов
- •1.36.6. Изоляция силовых трансформаторов
- •1.36.7. Изоляция электрических машин высокого напряжения
- •1.36.8. Герметизированные распределительные устройства
- •1.36.9. Изоляция кабельных линий электропередач
- •1.36.10. Профилактические испытания внутренней изоляции
- •Раздел 2. Воздействие грозовых перенапряжений на изоляцию воздушных линий и электрооборудование открытых распределительных устройств
- •2.1. Молния. Развитие грозового разряда
- •2.2. Электрические характеристики молнии
- •2.3. Характеристики грозовой деятельности
- •2.4. Защита от прямых ударов молнии. Молниеотводы
- •2.5. Зоны защиты стержневых и тросовых молниеотводов
- •2.6. Заземление молниеотводов
- •2.7. Особенности работы заземлителей при отводе токов молнии
- •2.8. Допустимое расстояние между молниеотводом и защищаемым объектом
- •2.9. Грозозащита воздушных лэп
- •2.10. Допустимое число отключений в год
- •2.11. Попадание молнии в линию без тросов
- •2.12. Попадание молнии в линию с тросами
- •2.13. Защитные аппараты и устройства
- •2.13.1. Защитные (искровые) промежутки
- •2.13.2. Трубчатые разрядники
- •2.13.3. Вентильные разрядники
- •2.13.4. Нелинейные ограничители перенапряжений (опн)
- •2.14. Защита изоляции электрооборудования подстанций
- •2.15. Распространение волн перенапряжений вдоль проводов
- •2.16. Параметры импульсов перенапряжений, набегающих на подстанцию
- •2.17. Защита подстанций от набегающих импульсов грозовых
- •2.18. Допустимые напряжения на защищаемой изоляции
- •2.19. Эффективность защиты изоляции электрооборудования подстанции
- •Раздел 3. Воздействие внутренних перенапряжений на изоляцию воздушных линий и распределительных устройств
- •3.1. Общая характеристика внутренних перенапряжений
- •3.2. Перенапряжения установившегося режима
- •3.2.1. Повышение напряжения в конце разомкнутой линии за счет емкостного эффекта линии
- •3.2.2. Установившиеся перенапряжения при коротких замыканиях
- •3.2.3. Феррорезонансные перенапряжения
- •3.3. Коммутационные перенапряжения
- •3.3.1. Отключение ненагруженного трансформатора
- •3.3.2 Отключение конденсаторов
- •3.3.3. Отключение ненагруженных линий
- •3.3.4. Включение разомкнутой линии
- •3.3.5. Отключение больших токов
- •3.3.6. Перенапряжения при автоматическом повторном включении (апв)
- •3.3.7. Перенапряжения при перемежающихся замыканиях
- •3.4. Ограничение внутренних перенапряжений
- •3.5. Допустимые значения коммутационных перенапряжений
- •Заключение
- •Библиографический список
- •394026 Воронеж, Московский просп., 14
1.36.2. Изоляция трансформаторов тока
Конструкция изоляции трансформатора тока зависит от его номинального напряжения. У трансформаторов тока номинальным напряжением 6—10 кВ применяется литая эпоксидная изоляция, которая обеспечивает необходимую электрическую и механическую прочность конструкции при малых габаритах.
Для изоляции трансформаторов тока на номинальное напряжение 35 кВ и выше изоляция обмоток производится кабельной бумагой, наматываемой вполнахлеста. Обмотки с магнитопроводом помещаются в фарфоровую покрышку. Внутренняя полость трансформатора после вакуумной сушки заполняется минеральным маслом.
Конструкция изоляции трансформаторов тока на номинальные напряжения 110—220 кВ принципиально не отличается от изоляции трансформаторов тока на 35 кВ.
При напряжениях более 220 кВ применяются каскадные схемы, то есть вторичная обмотка верхней ступени трансформатора питает первичную обмотку нижней ступени. Изоляция обмоток — бумажно-масляная.
Помимо конструкций опорного типа имеются трансформаторы тока, встроенные во вводы силовых трансформаторов и выключателей.
1.36.3. Изоляция масляных выключателей
Внутренняя изоляция масляных выключателей выполняется с большими запасами электрической прочности, потому что в эксплуатации при затяжном характере гашения электрической дуги масло в дугогасительных камерах и за их пределами сильно загрязняется углеродистыми частицами, которые оседают на изоляции и снижают ее электрическую прочность.
Внутренняя изоляция масляных выключателей состоит из масляных промежутков между токоведущими частями и баком выключателя и изоляционных барьеров (МБИ), а также из изоляции штанги и ее направляющего устройства. Штанги выключателей изготовляются из дерева твердых пород, пропитанных трансформаторным маслом, а направляющие штанг — из гетинакса.
Снижение электрической прочности изоляции масляных выключателей может происходить из-за влаги, поглощаемой им из атмосферы. Влага частично поглощается изоляционными деталями, а также выпадает на дно выключателя и в холодное время года замерзает. При оттепелях лед отделяется от днища бака, всплывает на поверхность масла и образует проводящую «дорожку» от токоведущих деталей к баку выключателя. Для предотвращения всплытия замерзшего конденсата устанавливается специальная перегородка, которая препятствует всплытию льда. При понижении температуры окружающего воздуха до -20° включается устройство подогрева масла.
1.36.4. Изоляция воздушных выключателей
Главной изоляцией выключателя является опорный фарфоровый изолятор, установленный на металлическом основании. На опорном фарфоровом изоляторе монтируется металлическая дугогасительная камера с эпоксидными вводами.
Для подачи сжатого воздуха в дугогасительную камеру и управления контактами выключателя внутри опорного фарфорового изолятора проходят изоляционные стеклопластиковые воздухопроводы.
При колебаниях температуры окружающего воздуха на внутренней поверхности опорных изоляторов может конденсироваться влага, что приведет к снижению разрядного напряжения и перекрытию по внутренней поверхности изоляторов. Для предотвращения конденсации влаги внутренние полости опорных изоляторов вентилируются (продуваются) сухим сжатым воздухом.